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A PROBABILISTIC METHCD OF DESIGNING SPECIFIED
RELIABILITIES INTO MECHANICAL COMPONENTS WITH
TIME DEPENDENT STRESS AND STRENGTH DISTRIBUTIONS
By Dr Dimitri Kececlioglu, Joe W, McKinley and Maurice J. Saroni

The University of Arizona
Tucson, Arizona :

SUMMARY

A methodology is presented, for the first year's effort, which
enables an engineer to design a specified reliability into a component
which has time dependent strength diatributions. The case of a
component subjected to combined-stress fatigue is treated specifically.
The theories of material failure which apply to components in fatligue
are reviewed, and the Von Mises theory of failure (distortion energy)
is solected for primary use. The maximum shear stress theory of
failure is used as an alternate. A large number of examples are given
which 1llustrate the design-by-reliability methodoclogy. Basically,
the methodology consists of the following three steps:

1. Determining the failure-governing strength.

2. Determining the failure-governing stress.

3. Bridging the gap by reliability theory.

A thorough discussion of mathematical methods used in problems of
functions of random variables is included. The methods discussed are:

l. Algebra of Normal Functions.

2. Change of Variable.

3. Moment, Generating Function.

4. Fourier Transform, Convolution, and Inversion.
S. Mellin Transform, Convolution, and Inversion.
6. Characteristic Function.

7. Cumulative Distribution Function.

8. Monte Carlo.
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Definitions of appropriate distributions are given, and a discussion
of their application to structural reliability is also given. Results
of applylng the mathematical techniques to these distributlons are
presented. The results are useful in the area of structural reliability.

Methods for determining the distributions of failure-governing stress
and strength are given. This includes the determination of the basic
stress and strength distributions, the distributions of influencing
factors, and methods for combining these into the final fallure-goverrning
distributions. Analytical, numerical, and experimental methods are
discussed.

The methods for bridging the gap by reliability theory once the
failure-governinz stress and strength distributions have been determined
are given. This includes analytical and numerical methods for both
normal and non-normal distributions.

Also described is the design, fabrication, and operation of fatigue
testing machines for reliability research. These machines utilize the
four-square principle to test relatively large specimens under reversed
bending and steady torque. These machines are providing valuable data
for combined-stress fatigue and for the generation of experimentally-
determined strength surfaces (three-dimensional Goodman diagrams) for
the design-by-reliability methodology.

A test program now being conducted at The University of Arizona
is described in detail. This program is providing data for the
demonstration of the design-by-reliability methodology.

Recommendations for further research in this area are given.
References are given at the end of each Section,




Y e

I — "

INTRODUCTION

Prior to this research effort, the basic methodology for
designing reliability into mechanical components by consideration of
the interference of their stress-strength distributions was discussed
by Kececioglu and Cormier (1)%. Included in this paper was a discus-
sion of Monte Carlo techniques for determining stress and atrength
distributions, given the distributlions of the factors affecting them.

Freudenthal (2) wrote a paper in which structural unreliability
was considered to be the probability, or risk, of failure, The safety
factor was shown to be a distribution function which is the
quotient of the strength to the stress, where both strength and stress
are considered as statistical variables. Freudenthal, Qarrelts, and
Shinozuka (3) prepared a comprehensive report along the same lines
which discussed in more detail the mathematical techniques required,
the appropriate statistical distributions involved, and problems which
remained to be solved. Several example problems in structural relia-
bility were worked out, an extensive bibliography was given. These
efforts concentrated on simple fatigue and structural reliability.

The Battelle Memorial Institute, and its Mechanical Reliability
Research Center presented studies (hs (5) which described some of the
fundamental problems in mechanical reliability, and suggested methods
for their solution.

Mittenbergs (L) discussed the fundamental aspects of reliability
engineering as they pertain to mechanical devices. He stated that the
failure modes of mechanical elemente were basicallys

l. Deformation.
2. Practure.
3. Instability.

He also asserted that many factore combine to determine the relia-
bility of a mechanical part under such failure modes. The interaction
of strength and load distributions was discussed. The Sixth Progress
Report of the Mechanical Reliability Research Center (5) surmarized
a two-year research effort. This extensive research effort contained
a thorough discussion of mechanical reliability, and attempted to
Quantify the relationships of various factors on such phenomena as
creep and fatigue. An extensive bibliography was included.

#Numbers in parentheses refer to References at the end of the Introduction.
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The IIT Research Institute conducted a program in "Methods for
Prediction of Electro-Mechanical Systems Reliability" (6). The program
was concerned with three major areast

1. The study of prime mechanisms of failure in mechanical
design. Specific items included fatigue, surface
fatigue, wear, creep, and corrosion.

2. The application of failure mechanism and design
information for the reliability evaluation of
gpecific mechanical parts. Parts included were
gears, bearings, springs, and shafts.

3. The determination of mechanical system relia-
bility in terms of individusl part reliability
figures.

A paper by G. Reethof, M. J. Bratt, and Q. W. Weber of the Large Jet
Engine Department, General Electric Company, entitled "A Model for Time
Varying and Interfering Stress-Strength Probability Degradation,™ (n
provided a computer approach towards the solution of the time variant
strength distribution case only and did not provide a complete solution
to it. .

The above works provided some interesting and valuable contribu~
tions to the problem of designing epecified reliabilities into
mechanical components. However, a number of important aspects of this

problem remained to be investigated. The problem cf time-variant
stress and strength distributions needed further treatment. The effects
of various factors, which are themselves distributions, on the distribu-
tions of the failure-governing stress and strength bad yet to be fully
explored. The development of a formal engineering design methodology
for designing mechanical conmponents had yet to be developed. Finally,
much of the work in mechanical reliability theory suffered from a lack
of statistically adequate data, due to a lack of test results on a

large number of identical mechanical components.

The purpose of the current investigation is to £111 in the gaps
in the above-mentioned areas, with the following specific objectives:

1. Develop a formal engineering methodology for design-
ing into mechanical components, subjected to
combined-stress fatigue which involves time-
depsndent strength distributions, specified
reliabilities.

2. Explore the methods of functions of random
variables as applied to etructural reliability.

3. Explore the methods available for determining
failure-governing stress and strength distri-
butions and develop new ones.

e
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L. Explore the methods available for determining
reliability once the failure-governing stress

and strength distributions are known and develop
new ones. :

S. Develop and fabricate fatigue testing machines
for reliability research, so that the explored

and developed methodologies described above can
be demonstrated.

6. Pursue a test program with a statistically
significant number of test apecimens to obtain
data from which thease methodologies can be
demonstrated.

This first year's research includes literature research, theoretical
research, design, development and fabrication of research equipment,
experimental research, and computer programming efforts.

The scope of the research effort has been broad and comprehensive,
and it hss been intended that this report will discuss all aspects of the
problenm of designing mechanical components which are subjected to combined-
stregs fatigue by the design-by-reliability metnodolozy. Included are all
aspects of estimating distributions, estimating stress and etrength
factors, computing reliabilities by various methods, and experimental
test procedures. This report should serve as a gulde to the implementa-

tion of the design-by-reliability methodology and as a basis for future
research. g

The breadth of coverage has resulted in many areas being uncovered
where more research in depth isg required. These are mentioned in the

body of the report and are also summarized in the overall Conclusions
and Recommendations section.

The design-by-reliability methodology described in this report is
a significantly new approach to the problem of design. This approach
will enable the engineer and designer to proceed in a rigorous and
scientific mamner, according to a clearly defined method, to design &
specified reliability into a mechanical component subjected to combined-
strass fatigue. This is an important step forward in the science of
designing a specified reliability into a mechanical or electro-mechanical
components and from there into products and systems.

The first-year effort of the research on which this report is based
dealt exclusively with the time-dependent strength distribution and the
time-independent stress distribution. The time-dspendent stress distri-
bution case is intended to be the subject of future research.
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SECTION 1

DESIGN-BY-RELIABILITY METHODOLOGY FOR PARTS SUBJECTED
T0 CQMBINED-STRESS FATIGUE LOADING
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CHAPTER 1.1

INTRODUCTION TO A SCIENTIFIC MECHANICAL COMPONENT DESIGN METHODOLOGY

Designing & specified reliability into a cowmponent requires that both 1its
failure - poverning stress and ita failure = governing strength be trcated as
distritutions., Moreover, the nominal failure - governing stress and strength
mst ordinarily be modified by a number of factors and conditions to bring them

to the i{n-service failure - governing stress and strength,

Picure 1.1 (a) shows how this 1s done in practice. The nominal stress and
the nominal strength are modified by various factors until the final distribu-
tions of failure - governing stress and failure - governing strength are deter-
mined. These distributions are shown in Fig. 1.1 (b).

then the distributions of stress and strength have been determined, the
reliability can be found as a measure of the interfercnce of the stress and
strencth distributions. This will be discussed later in this Section, and fuxe
ther in Section 5 of this report.

Designing mechanical components by reliability is & relatively new endeavor
and msny engincers are not familiar with it, The main purpose of this Section
{s to introduce the engineer to the design by reliability methodolozy. A general
engineering design methodology will first be presented, Then an application will
be given in the form of an example problem. This problem will be presented from
two viewpoints: a) first the problem will be worked by conventional engineering
design methods, and b) then it will be worked by design by rellability methods.
An exanple of designing a specified reliability directly into a shaft will be
given. The parallel treatment of the same problem by both conventional and re=-
liability methods should provide the engineer with an understanding of the design
by reliatility approach,

Also included in this Section is a discussion of the theories of material
failure which are significant for deteramining the fallure - governing stress and
strength for parts subjected to combined-stress fatigue loading.

Next are included a number of other examples which illustrate briefly but
completely how the design by reliability methodolopy cén be extended to various
loading and stress conditions, including both a finite~-1life and an infinite-life
design,

First to be discussed will be a Scientific Mechanical Cowponent Deaign
Methodology.

Preceding page blank




Y

A

STRESS

INCREASING

-
NOMINAL STRENGTH
STRENGTH WITH SIZE FACTORy
STRENGTH WITH LOAD FACTORy
DECREASING
STRENGTH | STRENGTH WITH SURFACE FINISH FACTORy

STRENGTH WITH PROCESS FACTOR

lThese distributions

STRENGTH WITH SURFACE ENVIRONMENT
FACTORS

S'S—p»

STRENGTH WITH SHEAR STRENGTH FACTORS

FAILURE GOVERNING STRENGTH

may be those of
tensile or shear
stress and
strength, or of

distortion energy.

Strength
Distribution

MAXIMUM STRESSES ESTABLISHED AT CRITICAL/
POINT BY STRESS PROBING

STRESS WITH OTHER STRESS FACTORS/
(SEE TEXT)

STRESS WITH TEMPERATURE FACTOR/

STRESS WITH LOAD FACTOR”

STRESS WITH STRESS CONCENTRATION/
FACTOR

NOMINAL STRESS A

Stress
Distribution

10

0

(a)

-
f(s), f(S)
(b)

(a). Stress increase and strength decrease resulting
from the application of the respective stress

and strength factors.

(b). Failure governing stress and strength distribution.

FIGURE 1.1 DETERMINATION OF THE FAILURE GOVERNING STRESS

AND STRENGTH DISTRIBUTIONS.
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steps (1)%,
oration.

1'
2,
3'
4'
5.

CHAPTER 1.2

A SCIENTIFIC MECHANICAL COMPONENT DESIGN ETHODOLOGY

The recommended scientific mathod of tackling and solving any prollem,
including that of mechanical design, consists of the followiny five baslc

Some of the steps ure broken into further suldivisions for elat~

State the problen,

Understand the problea.

Devise a plan of attack,

Carry out the plan,

Bxamine the solutlon == Look back.

In mechanical design, the details of these steps are the ﬁollowing:

1. State the problem, = In clear and unambiguous terms verbally describe

the problen,

stating the objective, the given quantities and conditions, the

constraints 1f any, and tlie available technical data, and provide the pertinent
engineering drawings or sketches. ,

2., Understand the problem. -~ The problem way be understood Lest by drawe

the unknown?
(d) what are

invoives the

3

.1
3.2
3.3

ing a complete sketch of the component and answering the questions: (a) what is

(b) what are the data? (c) what are the conditions and constraints?
the other factors? :

3. Devise a plan of attack. = The best and most methodical plan of attack
for desizniny a wechanical component, where the fiber stress governs its fallure,

folloving three steps!

Determine the failure governing stress.
Determine the failure governing strength.
Eridge the gap between the failure governing
stress and strength.

4, Carry out the plan, « For the design of a mcechanical coumponent, carry=

4.1

following:

This is
stresses. These factors include, but are not necessarily limited to, the

ing out the plan consists of successfully completing thethree steps glven pre-
viously. The details are the following: reee

Determine the failure governing stress as follows:

4,1,1 VYerform stress probing
4,1,2 Calculate the nouinal stresses
4.1.3 Determine the maximum value of cach stress component

involved.

accouplishad by applyihg appropriate stress factors to the nominal

® Nuuber in parenthesis refer to referenccs at the end of this Section,

11
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1, Type of loading

2. Stress concentration B
3. Manufacturing residucl stress
4, leat treatment

5. Assenmbly stress

6, Vear :

7. Corrosion

8. Erosion

9, Cavitation

10. Temperature

11, Time

values of these stress factors and procedures for applying them may be found
{n such references as (7), (8), (9), (10), (11), (12), and (13).

4.1.4 Deternine the principal stresses

This step may or may not be required, depending on the couvenient fora of
use of the fallurce governing stress criterion applicable to the particular pro-
blem at hand. Referemces (2), (3), (&), (5), or (6) can be used.

4.1.5 Synthesize the stresses into the fallure governing stress

It {s very important that the correct fatlure govarning stress is deter-
mined. The more commonly used failure governing stress criteria are the
following: .

1, Maximum normsl or direct stress

2. Maximum shear stress

3. Maximum distortion energy

4. Combination of mean and alternating streogses
with fatigue criteria

It i{s fmperative that the criterion most applicable to the particular prot.lem
at hand be used. In the case of a shaft, for example, the maxiwmum distortion
energy criterion may be used to calculate the failure governing combination of
the mean and alternating stresses. These stresses may then be coubined on &
modified Goodman disgram. The point in the shaft where the failure governing
stress combination is closest to the failure governing strength line would be
the point where failure is most likely to occur.

The problem of determining which failure governing stress theory applies
{n the case of combined-stress fatigue loading will be discussed in Chapter 3
of this Section.

4,2 Determine the failure joverning strength
A major probleu in design is to determine the strength which 1f exceeded

leads to failure. For this, the strength criteria best assoclated with the
type of faflure involved should be selected,

ey
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4,2,1 Establish the applicable failure governing strength
criterion.

This step is discussed in detail in Chapter 3 of this section.
4,2,2 Determine the nominal strengths

%4.2,3 Synthesize the strengths into the faillure governing
strength,

Nominal strength values arrived at by tests on specimens of different
geometry, size, surface, treatment and other conditions, should be converted

to the actual strength that will be exhibited by the component being designed

in its actual application and operation environment, To convert nominal
strengths to actual strensths, strength factors are used., These factors may
include, but are not necessarily limited to those discussed in Section 4.2.3
as well as, surface environment, surface treatment, notch sensitivity, size,
surface finish, manufacturing processes, fatigue and creep.

The next step is to apply the modified nominal strengths’to the failure

"governing strength criterion. This completes the steps to arrive at the
1failure governing strength.

4,3 Bridge the gap

The gap of concern is that between the failure governing strength and the

failure governing stress. Such a gap i{s the one indicated by the chaded gap

in Fig. 1.1 (a). For fatigue, it 1s the shaded gap in Fig. 1.5 or the distance

from 8f to 37 .
Three approaches may be used to bridge this gap:
1. safety factor
2, Safety margin
3. Reliability

The safety factor, S. F., is usually defined as
Ef
S.F. = E? (1.2.1)
It 48 the ratio of the fallure governiny stren;th mean, qf , to the fallure

governing stress mean, Sf .

The safety margin, S. M., is usually defined cither as

S.M. = SUF. » 1 A (1.2‘2)
Mean Strenpth-laximum Stress _ S = Spax
or as S.M. Strength Standard Deviation oy (1.2.3)
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whore Spayx = § + 4.5 og and the factor 4.5 {s chosen arbitrarily.
The rcliability approach will be discussed later.

5. Exauine the Solution - Look Dack, - This step consists of answering
the following jJucstions after examining the solutlon:

a. Can you check the result? Can you check the argument?
b. Can you darive the result differently? Can you see it at a glance?
c. Can you use the result, or the method, for some other problem?

The steps of the formal desisn methodology will be illustrated next by an
example problem, The problem, when carried through by Loth the conventional
design wethods and the design by reliability methods, will serve to illustrate
the differcnce in the two approacl

Conventional Design Example

1. Stecemcnt of the Problem

A solid, round, rotating shaft is to be loaded by a bending woment of 6, 000
1b.~in, in one plane, of 10,000 lb,-in, in a plane %45 degreces clockulse to the
first and of 8,000 1lb,~in. in a plane 50 degrees clockwise to the first. All of
these three planes contain the axis of rotation of the shaft and all moments avre
of the same sign., An axial, compressive load of 5,000 pounds and a torque of
15,000 1b,-in, are also to act on this shaft,

The material to be used is cold drewn ductile steel having a Su = 100,000
psi and a Sy = 72,000 psi. The critical point of the shaft has a theoretical
stress concentration factor of 1.5 in bending. The fillet radius at this point
is 1/4 in. Consider no other stress concentration factors.

Using & safety factor of 2.0 and a 95 per cent reliability at 106 cycles,

find the appropriate shaft diameter based on the Von Mises-hencky=-Goodnan
strength criterion.

2. Understanding the Problem’
A sketch of the shaft and its loading is given in Pig. 1.2,
What is the unknown?

The shaft diameter, d , at the critical point, i.e., at the point where
the shaft is mogt likely to feil.

What are the data?
1. Solid, round, rotating shaft.
2. 100(13 ‘

a, 1 = 6 000 lb.'in-
b, My = 10 000 1b,~in, in a plane 45° cloc&wise to the first.

14
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¥ = 6,000 lb-in

{Fillet radius = 1/4"
' = 10,000
= 2 ]
s.c.f. 1.5 50 lb-in
1
: Ke)
7\ %o
...__.r -,.-————HP = =5,000 1b, -r - - Hy = 8,000
! | 1b=in
T = 15,000 1b-in
T Critical Section I Q\_a“a
1 - R 1 ™R
q{

4——-—————iT-x ‘

FIGURE 1.2. ROTATING CIRCULAR SOLID SHAFT WITH LOADS ACTING ON IT.
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M3 = 8,000 1b,~in. in a plane 90° to the first.

b. #Axial load: P = -5,000 1b.
¢, Torque: T = 15,000 1b.-in.

3. Material: Cold drawn ductile steel with

Su = 100,000 psi.
Sy » 72,000 psi.

4, Stress concentration factors: At the critical point s.c.f = 1,5
in bending; consider none other.

What are the conditions?

1. Safety factor = 2,
2, Desired reliability = 957 at 106 cycles.
3. The Von Mises-Hencky~Goodman strength criterion appligs.

What are the other factors?

1. The information is sufficient.

2, All conditions can be met except perhaps that of simultaneously
desizning for a safety factor of 2 and a reliability of 95% at 106
cycles, This aspect will be discussed later.

3. Devising a Plan of Attack

Por such mechanical components the plan of attack has already been presented
in Chapter 2, Item 3, and consists of

determining the failurc governing stress,
determining the faillure governing strength, and
bridging the gap

.
.

www
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4, Carryin~ out the Plan

4,1 Deternining the fallure governing stress

Perforu gtress probing

The way the given problem is stated, this step is not required, because the
critical point on this shaft where a failure is most likely to occur is given
to be the fillet designated in Fig. 1.2.

Calculate the nominal stresses

Pirst, we have to determine what stresses are acting. The general stresses
that may act on an element of the shaft at the fillet are shown 1n Fig. 1.3.

For this problem, however, if the resultant nowment's plane is taken to be
the p-y plane, and the shaft's axis of rotation is taken to be the x-axis, then
Z

16
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(b) The Specific Case.

FIGURE 1.3. STRESSES ACTING ON AN ELEMENT IN A ROTATING SHAFT.
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o, @ 0y = 0 : (1.2.4a)

Txy = Tyz @ 0 (1.2.4b)
and the remaining stressas are o, and Tzx -
The shaft is subjected to fatisue; consequently, the oy stress has two
components: (1) the constant stress component due to the constant coupressive

load P = -5,000 1b., and (2) the variable or alternatin; coaponent duc to the
resultant bending moment acting on the rotating shaft, Therefore

Oy ™ Oxm + Oxg - 1.2.5)

From equilibrium and combined-stress fatigue conditions

Txz ® Tzx ™ Txzp + Txza (1.2.06)

As the shaft 1s cubjected to a constant torque, txzzg = 0 , and only Tyzy 1o left.
Therefore

Txz * Tzx ® Txzm (1.2.7)
The nominal values of these stresses are calculated as follous:

P 4P 4(=5,000)
Oxm © % ® nd? ® nd2

Oym * =6,360/d2

CMpe  Mpd/2 32 M
1 nd? /64 xd

%%a - (1.2.8)

where Mg = 20,000 1b.-in., from Fig. 1.4, Hence,

32 x 20,000
L]

C.
Xa :’td3

Oyq = 204,000/d3 | (1.2.9)

Te T d/2 16T
m v~ .

Txem T T Tdh /30 © a3

- 16 x 15,000
Txza std3

Tz * 76,400/d3 - (1.2.10)
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FIGURE 1.4. GRAPHICAL DETERMINATION OF THE RESULTANT MOMENT ACTING
ON THE SHAFT.
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Determine the maximum value of each stress component involved

In this problem, oy, and Tyzm are the maxima already, but not oyg because
a stress concentration exists in the fillet. Then

Maximum oygq = Oyxg X Kf (1.2,11)
wvhere
Ke = fatisue stress concentration factor
and s given by
Ke = 1 + q(K;-1). See shigley (7, p. 170, Eq. 5-18)
q = 0.9, See Shigley (7, p. 171, Fig. 5«27)

Ky = theoretical stress concentraticn factor = 1,5, as given in the state-
ment of the probleuw. g

Therefore
Ke = 14 0.9 (1.5-1) o (1.2.12)
Kg = 1,45 /
204,000
and oy, = -—-;-T- x 1.45
or oy, = 295,000/d3 | (1.2.13)

for the maximum value of that stress component.

ggtermiue_ghegprinciggl gLresscs

The fallure governing stress can be expressed in terms of o, and 1%, , in
this problem, hence the principal stresses nced not be calculated.

Synthesize the stresses into the failure poverning stresses

As stated in the problem, the waxinum distortion energy or the Von llises~
Hencky criterion governs because the shaft is of ductile material subjected to
fat{cue. In Chapter 3 of this Section, the appropriate theories of fallure for
combined=stress fatigue will be discussed more thoroughly,

For the ordinary element, the mean and alternating components of the Von
Mises-Hencky failure geverning stresses are glven by

om -‘\/gﬁm - Oy Tpy * O ¥ 3 Tozm (1.2.14)
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8g “VVO;%a - Oxa Oza + O%a."" 31'}2;23 ' (1.2.15)
from Shigley (7, p. 158, Lgs. 529), vhich reduce to the following for this
problera: _

(-3 -“V/oim + 3T§zm (1.2.16)

8g = \/o%a o Gxa‘ v (1.2.17)

The maximun stresses calculated previously cam now be substituted into the
equations for feilure governing strcsses as follous:

b 'V:6,360/d2)2 + 3(76,400/a%)? k

and

8g = 295,000/d3 , : (1.2.18)

If d was koown, then 8, and 5, could have been calculated and plotted on
the Modified Coodman Diagram to see thelr relative position with respect to the
failure governinz strength, This cannot be accoaplished as yet; houever, the
locus of the failure governing stress on the Modified Goodmun Diagram can be
determined. The locus will be a line with the slope sg/sy or

. ,
Slope = == = 295,000/4 , (1.2.19)

\/ (~6,360/a%)2  + 3(76,400/a3)?

The slope cannot as yet be calculated, unless this expression is simplified.
An inspaction of the denominator reveals the first term is very small numerically
in couparison with the sccond term, hence the first term way Le dropped as a
first approximation, The validity of this assumption should be checked back,
however, after the final result {s obtalned. Then

8a 295,000/d3 295,000/ 295,000

8 VS(76,400/<!3)2 -\[3(76,400/d3)2 132,000

Therefore
Slope = 2,24,

This slope line has been drawn in Fig. 1.5. Thic is as far as the failure
governing stress determination aspect of the problem can be carricd out. It cam
be determined, however, once the gap between it and the failure governing
strenpth Ls bridged. We shall determine the latter next.
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4.2 Determining the failure governing strength

Establish the applicable failure poverning strenath criterion

Ais stated in the prollem, the Von Mises-Hencky-Coodman fatigue strength
criterion applics to this problem. The applicable strength criterion is the
line draun in Fig., 1.5 from 3o to S5y »

peteraine the noaminal strength

The nominal endurance strength, Sé , as obtained from the standard fatigue
is :

Sé = 0,50 Su* from shigley (7, Eqs. 5-11, p. 162) because the shaft will
be made of steecl with an ultimata strength of gy = 100,000 psi which is less
than 200,000 psi, If Sy > 200,000 psi, then Se = 100,000 psi* is used for
stecls. Therafore, for this problen

53 ® 0.50 x 100,000 = 50,000 psi.

The nominal static strength is the ultinate tensile strength, 5, , and the value
given for this in the problem is Sy = 100,000 psi.

Synthesize the strencths into the fzilure poverning strenath

6. To obtain the actual endurance strength, the nominal endurance strength
gshould be corrccted using the applicable strength factors, as illustrated in

Figure 1.1(a).
Then

Se = Se kg kp ke kg ke 3 (1.2.20)
vhere |

S; e endurznce limit of the rotating-beom specimen, in psi. This is not
the strength that vill be exhibited by the shaft in its actual geometry, and
application and operation environments. Bence it is only the nominal stremgth
and will have to bLe modified to apply it to this problem.

k, = surface finish factor

kp = size factor

ke » reliability factor

kq = teaperature factor

®r1.1s relationship is one of a rala~of~-thumb, Both the 0.50 coefficient and the
value for Sy nead to be studicd further from a distributional point of view so
that the true distribution of SA can be found.
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kf » miscellaneous-effects factor

Shisley (7) recommends the incorporation of a reliability factor in this
manner for detcermining the actual endurance strength, It must be polnted out
that this approach is not correct, and that this research polunts out the
correct approach, The factor will be rctained at this point howvever, so that
the conventionsl method can Le illustrated,

It should also be noted that kg, the stress concentration factor, is not
{included here Lecause it should preferatly not be applied to strength. This
i{s a departurc from the methods of conventional design as given in Shigley
(7, p. 166). There may be a multiplicity of stress concentration factors ine
volved, each onc having different magnitude, with a net result that may not
at all be equivalent to a factor which vhen applicd to the nominal strength
will duly take into account all s.c.f.'s and the notch sensitivity., As it may
be seen, in this problem only oy, expericnces a stress concentration factor.
Furthermore, it does not have the same effect as either multiplying the failure
governing stress or dividin; the failure poverning strength by the s.c.f.

These strength factors may be determined as follows:

Surface factor, k, = 0,74 (7, Figs. 5-26, p. 167)

Size factor, kp = 0.85 (7, p. 165)

Reliability factor, k, =1-(0.0C x 1.6)= 1-0.,128 = 0.872
(7, Table 5-2, p. 149)

Temperature factor, kg = 1, as no temperature effect is
indicated in the problem.

Miscellancous-effects factor, k¢ = 1, as nome other is
indicated in the probleu.

Consequently, the failure governing endurance strength s
Se ® 50,000 x 0.74 x 0.85 x 0.072 x 1x1

or Se = 27,500 psi.

b. The failurec governing strength in static loading is §; because fracture
{s considered fallure of the shaft, or S, = 100,000 psi, If in a particular
design application, ylelding is selected as the static strength failure criterion,
then Sy should be used for this strength, instead of S, along the absciesa.

¢, The failure goverping strength in fatigue is conservatively taken to be
the line joining S, (at 10° cycles for this problem) and Sy . The closer the
(sa,8y,) point is to this line, the greater i{s the chance of failure, This
foilure chance approaches 507 when the point is on the strength line, and approaches
100, as the point woves away from the strength line and substantially to the right
of it,

4.3 Pridping the Gap

In this problem, a safety factor of 2 is specified, hence,

Eﬁ.- 2
8¢

L
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froa similar triangles in Fig. 1.5.

Therefore, using the alternating components,

%if = 2= E;%%E%%%Zg (1.2.21)
Consequéntly,

a> = 23.9
and d = 2,87 inches
say d = 2-7/8 inches )

This 13 the solution to the example problea.

5. Examining the Solution

a. Checking the solution reveals that it is correct based on the safety
factor concept. )
L. An assumption was made in determining the slope salsn (Eq. 1.2.19).

The validity of this agsuaption should bLe chacked. The first terw in the
expression for sy was considered to be negligible with respect to the second

tera. Actually,

2 c '

- 5y 2 . 162

L 6:360/(2-87)) ]2 x 100 - 5-95 X 1.0) pes LO : 0.02(}-'
3 [ 76,400/(2.875%) ] 3.12 x 10°

or indeed neglizible; thus validating the assumption.

c. Alternate

S :
Also, the fact that'—gg = 2 can be used.

8{
be obtained, of course. fa

d. The answer is, therefore, correct within the approach used.

e. The ensuer is not quite corrcct on the bac
hovever, as it wéll be shown next.

The same result as before would

{s of designed-in reliability,
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Design by Reliability

Every designer essentially attempts to design for minimum or essentially no
failurcs, hence he intuitively thinks of reliability, or the probability that
the product will not fail, However, using safety factors, or safety mergins,
gives relatively little quantitative indication of the reliabilities involved.
Portunately, methods do exist now which enable the designer to calculate and
thus predict component and product reliabilities.

The design method to be discussed here does not accept the theory that the
failure governing stress and the failure governing strensth are single~valued
quantities. Rather, it accepts the theory that variabilities in the loads,
moments, torques, zeometries, piiysical propertiles, manufacturing processes and
procedures, and environmental factors which affect the stresses in f{dentical
components in a fleet of products, say in the same shaft of a fleet of truchks
or jet aircraft enjines, will result in a failure governing stress distribution,
{nstead of a single value of stress. In other words, if we had strain gages on
the particular shaft fillet of every truck or jet cngine in this fleet perform=
ing the same task, and determined the stress hilstory for every identfcal trip
or flight, picked up the maxina of the stresses {n each flight, converted them
to failure governing stresses, and plotted how many times a particular small
range of these stress values occurred, a distribution like that shown in Fig.
1.6 would be obtained. As actually all the shafts for the fleet of such trucks
or jet airplanes and not a single shaft are designed, for the shafts in these
fleets to survive, they should be designed for the failure governing stresses
to be experienced by the identical shaft in the whole fleet, Hence the design
should be based on this distribution of the failure governing stresses in the
shaft and not on some single value: maximum, mean or other.

Similarly, the strength exhibited by these ghafts will not be single-valued
in reality. Variabilities in the heat of metal the shafts are made of, the
manufacturing process, the various treatments the shaft is subjected to, the
assembly process, and the environment the shafts will see in the fleet will re-
sult in a distribution of the failure governing strengths of identical shafts.
In other words, some shafts will fail at a substentially lower level of imposed
gstress because they are weaker, and some will fail only when a substantially
high level of stress is imposed on them becausa they are stronger than the
average strength shaft,

Consequently, for a component in a fleet of products, the designer has to
consider and deal with the joint stress and strength distributions shown in
Pig. 1l.7a. The shaded ares glves nuoerically the probability of failure of such
a component experiencing the stress distribution given and exhibiting the
strencth distribution given in Fig, 1.7a. A method for calculating the reliabil-
ity of a component having normal stress and strength distributions will be pre-
sented next. :

Determination of Component Reliability When the Failure
Governing Stress and Strength Distributions are Normal

1f the density functions £(s) and £(8), representing the stress and

strenzth distributions, respectively, are Gaussian or normal, then they may be
expressed as ’
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f(s) = e 2 o (1.2.22)
asv 21 8
and
-2
. -1 [ g_.s.]
£(s) = e L 05 (1.2.23)
GSV 2n
where

T = mean of the failure governing stress distribution

og= standard deviation of this stress distribution

S = mean of the fallure governing strength distribution

gl
og® standard deviation of this stréss distribution
Reliability is given by all probabilities that strength is in excess of

stress or that Ses > 0 . Using the designation ! = S-3, reliability is given
by all of the probabilities that { >0 . B(() is defined as the difference

distribution of £(5) and f(s), and as £(3) and f(8) are normally distributed,
then h({) is normally distributed also (16, pp. 215-216) and is expressed by

—1 -
B(t) = —tze o 2 [‘E’-gi] (1.2.248)
dg\/Zn

where
E'- S - g = mean of the difference distribution (1.2.24b)
and :
G; = \/og + cg = standard deviation of the difference distribution
(1.2.24c)

Reliability would then be given by all probabilities of { being a

. positive value, hence

=2
+o -1 [5_'.5.]
R = 1 [ e2 Ll ol g (1.2.25)
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The function h({) and the value of R are shown in Fig. 1.7b,

The relationship between h({) and the standardized normal distribution can
be utilized to evaluate the above integzral, The transformation relating ¢ and
the standardized vartable t umay be used which is

t - _Q_'E_ (1.2.26)
% .

The new limits of the integrand are

for { =0, t= 0-8L-_-.%
o e
+ -7 .
and for { mt @, t @<= af
s
also df = o dt

If these conditions are substituted into the reliability equaticn, the
following result is obtained:

tN =
rt

R = f.“ol )

:E.Qz“e
ot

dt (1.2.27)

Consequently, the reliability of & component is given by the area under the
standardized normal density function [rom the value of

Cw - to t m 4 »
ag .

The value of this arca may be obtaiﬁed from the tables of areas under the
standardized normal dengsity function, available in many refercnces (9, p. 589).
Reliability as a function of t i{s plotted in Fig. 1,8.

Reliability Design Example

The values found in the problem at the beginning of this Section for the
failure governing stress and strength will be used. These are
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- 24,800
[ LR - A<l ]
§p = <555 = 27,300 pst
Prom Fig. 1.3, tan o= 2,24 and 0 = 66°
gf
Bp = 7 13,650 psi
As og and o5 are not knouwn, for og a realistic value of 3,000 psi and for oy
the value of 2 of Tf or 2,200 psi recommended by Shigley (7, p. 169), will be
used.™ Then ,
T =5, - % = 27,300 - 13,650 = 13,650 psi
o \fos? + o = '\5,200)2 + (3,000)2 -'\/13.84 x 10°
o = 3,700 pst
e Loimam.
% 3,700
Then
o =1 .2
R = \/p > e dt
"307 "

From normal function area tables, the arca from t w «3,7 to t = 4 « {5 0,99989;

therefore, the reliability is for practical purposes equal to 1. This compares

with R » 0,55 to which the shaft was sized using Shigley's, or the conventional

method (7, p. 169). Because of this foreseen discrepancy, the statement appear=-
fag at the end of "Exauple - Examining the Solution" was made, The reasons for

this discrepancy are the followiug:

1. The reliability factor of conventlonal design {s based on the distri-
bution of strength beyond the knee of the SN simple fatigue curve shown in
Fig, 1.9, where the mean stress is zero and the alternating stress is one of
complete reversal, hence the ordinate of Fig. 1.9, is S, .

% This {s a rule of thuub value, Another value which has been sugpested is
4%, in Y"Sywposium on Fatigue with Umphasis on Statistical Approach 1X,"
ASTM 5TP Yo. 137, June 24, 1952, p. 52. This standard deviation of the en-
durance liamit is another area vhere much research needs to be done,
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In the example problem solved in the beginning of this chapter, there
exist both mean and alternating stress components, Shigley's and conventional
design fatigue factors should lLe used only for simple fatlgue ceses.

2, The conventional desizn reliability factor is based on the fatigue
gtrength distribution of a standard, rotating-beam fatigue specimen, and the
factors are applicd tc the mean of this distrilution to convert it to the
specific case of the problem, This application merely adjusts the wean strength
and does not adjust the standard deviatfon which most probably 1s also affected
by other factors, such as size, surface finish, temperature, etc, The value of
87 of the Sf used in the problem is not truly applicable in this case because
it should be the standard deviation of the strength distribution with all the
correction factors applied and not of the distribution for the standard rotatinge
beam specimen,

3. Conventional design methodology assumes that the falilure governing
stress 1s reprosented by a single value which would be its mean in this problem.
In the illustrative problem, the failure governing stress was taker to be a
nornal distribution with a mean of 13,650 psi and a standard deviation of 3,000
psi. If the standard deviation is taken to be zero to correspond to the single-
valued case, then the reliability would be glven by

S e 2x
-5
ag 3

or

w}mret--La-ME@.u -6,21
g 2,200

Therefore, from tables of areas under the norwal distribution
R=0.97269 = 1

This compares with R = 0,95 used fn the example problew in the beginning of
this chapter, and ia greater than R = 0.53939 obtained vilth a o, = 3,000 psi.




4, The true fallure governing stress and strength distributions for the
{1llustrative problem are those shown in Fig. 1.10. Here the assumption is made
that the ratio of the alternating to the mean stresses in fatigue in this pro-
blem remains always constant, It is with this assumption that i(s) is drawn as
a two dimensional rather than a distribution of more than two dimensions. See
reference (17, Fig. 3) for the multi~dimensional case, The two distributions
in Fig. 1.10 are the ones that should ba determined by the mathodology presented
in this chapter and then the reliability resulting from these distributions
should be calculated to obtain the true component reliability.

5. It should be pointed out that these distributions have been taken to
be normal, There are strong indications that these distributions may be none
normal, Among the none-normal distributions that are found to fit better are the
loz-normal and Wefbull. The determination of reliability with such failure
governing stress and strength distributions is presented in reference (17) and
will be discussed further in this report in Section 5.

6. It should also be pointed out that the method prescnted here for the
calculation of reliagbilities assumes that the failure governing stress and
strength distributions are constant or do not vary significantly from migsion
to mission. Consequently, the time dependency of the calculated reliabilities
should be considered, since the Modified Goodman Diagram considers the strength
aspect for one specific life duration only. This can be accoamplished by generate
ing a number of such diagrams, as is discussed later in thisg report,

-

Conclusions and Recommendations

The methodology presented in this chapter should make it possible tc degign
components and products more sclentifically and on a more sound engineering basis,
The reliability approach of bridging the gap tetween the failure governing stress
and strength provides a quantitative measure of the proba:ility of success or
failure of a component and of a product made up of such components,

It is recomrended that every effort be expended in industry and in labora-
tories to gather failure governing stress and strength data and report tliem in
4 manner that would enable the development of their distributions, rather than
averaging the measurements involved and discarding any which may appear too hizh
or too low even though they are the result of well-controlled tests and experie
ments,

It 15 also recommended that design engineers use these methodologies and
also contribute to their refinement. Furtherwore, it {s recomnended that the
designer think in terms of reliabilities, {.e., probabilities of success and
unreliabilities, i.,e., probabilities of failure, rather than in terms of the
inadequate safety factor or safety margin,

This chapter has discussed the general approach to be used in designing by
reliability. In the next chapters we will discuss first the proper failure
governing strength theory to use for cowmbined-stress fatigue, and second, show
hovw this theory can be applied in designing parts subjected to combined-stress

fatizue,
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QWPTER 1.3

FAILURE GOVEDNTIG STRRIGTE TIENLLS AND DRSICH HETIONS
FOL CRBDNED=5TISS FATIGUL

Lugroduction

In this chapter the most recently availablc works dealing with combined=-
gtress  fatigue are Preseated to deteraine the best current nethodology to use
for design iu these cases, Oae wust rcallze froo the outset that tie coacluye
sion and recoumendations of this chapter arc restricted to “"alloy steols', mud

b ]
that different recomacndations may apply to aluninum end cest iron,

A search of refercnces (18) and (19) reveals no Very recent work on the
subject save that of Findley (20)., Other fatrly recent works (1953=1952) are
suameclied in (7), (1h), (21), (22) and (23),

It is felt that oll pertinent literature up to 194
vefercaces (7), (14), (21, (22) and (23).
Sadith (31). 1 February, 1963, Peters
43 covering the case of steady stresg,

Y hag been covered in
In particular, we have relicd wpon
on (34) is content to acecept Smithi's work

SAE 4340 is treated particularly in refercnces (32), (33), and (35).

A The evidence supporting thae various cdmbined-stress fatigue failure&ﬁgqries are;
glven and specific recowaendation for the case of alloy stcels are made, Thc
curreat desizn inethodology for combined=stress fatigue, a5 outlined by Shigley

(7) is discusged and supporting cvidence for its adoption with souc revigious,
is given. :

Theories of Failure

Scveral theorics of failure have been Proposed to deal with the static
case, and each onc has its application, depending usually on the type of
material being congidered, Ve shall summarize them here, end thea consider
which of then, if any, can be used for a theory of failuve in fatigue, Tor the
discussion, let P;, P,y P,, be the amplitudes of the principal etresses where
Py 2 P, 22, aad leg 5 ae the altermatiag fatigue strength of the material,
Then we have {22) the following failure cviteria:

1, HMaxioun Priacipal Stress Criterion,

whereby if P} 28, failure results

(1.3.1
2. Maxiukxa Shear Criterion, .
whercby 1f Pl = g > 8, failure results (1.3.2)

3.

Vou llses=lencky or Octanedral fhear or Sheor Straia Energy Criterion
—— ey — —

[ Reproduced from
best available copy.
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.

whereby 1f (Py = P2)2 + (P = P3)2 + (P3 - P1)2 >252 fajilure vesults,

(1.3.3)

4. MaxLlizm Principal Strailn Criterion

whexeby 1f Py = (P, + P3) > S, failure results, ‘ ' (1.3.4)

Here y = Poisson's ratio

Each one of these cquations can also be written In terms of the coordinete
stresseg o; and tij. » '

To experimentally check which of these theories should be used, one can '
calculate the ratio of fatigue strensth in torsion to fatigue strength in .
bonding., The results are summarized in Table 1.1 (22).

TARLE 1.1 ’

PREDICTED RATIO OF FATICUL STREUGTY IN BENDING TO FATIGUE
STRENGTH IN TORSION FOR VARIOUS THEORILS OF FALLDRE

Theory of Failure Fatigue Streacth dn Torsfon
g Fatigue Strength im Cendiug

[ —-

Moxinum Principal Stress
Maximum Shear Stress .
Shear Strzin Energy .«
Makimmn Principal Stress

1.0
0.5
0.577

i,
PR S f
E

1 "'F.
1 77 for s = .
I——;-l:‘-'ﬂ 0.77 i'ortc J.3
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Results of experiments may now be plotted, as shown in Figures 1,11 and
1.12, 1In Figurc 1.11, Forrest (22), (citing (1%), (24), (25), (26), 27y,
(28), and (29), for stecls), shows that the Von Mises criterion applies very
well to steels. 1In Figure 1.12, Dolan (23), ¢tiug (24), (3u), and others)”
shows much the same results although the maxiuuwn shear stress theory ghiows
fairly good agrecaent also {n wany cases.

A different represeatation is shown in Figuare 1.13, vhere Sinecs aand
Halgiman (21) show the data of Sawert for steels. ‘The agreaacont with the Von :
Miises theory is pood. The wakimim shear stress theory lg seeu to Le cons !
servative, '

Polan (23) chows the work of reference (27) and others in yet another :
fora in Tigurce 1.14, Again, the agreement with che Vo iilscs theory ic good e
) for stecls, and the waxiaun shear stress tiicory is secn to be concervative,

Reproduced from Q‘

best i "G
available copy. /,“\\§
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Alternating fatigue strength in bending, b, tons/in?

{
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:FIGURE 1.11 COMPARISON OF FATIGUE ‘STRENGTHS IN BENDING AND
TORSION FOR CAST IRON AND STEEL (REF. 22)
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Another interesting representation is given by Sines and Waisuan (21).
ilere, experimental rcsults are compared agaiast predicted values of ratio

Max. shear stress in torslon test
ilax, shear stress in bending test

For the Von Mises theory, the predicted ratio is 1.15. As shown in Table
1.2, wost alloy steels agree with this value, and in perticular, the Ni=Cr=No
steels (SAE 4340 alloy steels is 0.4%C, 1.8% Ni, 0.8% Cr, and 0.25% Mo.) are
in close agreement,

TABLE 1.2 (ADAPTED FROM (4))
RATIO OF MAX. SHEAR STRESS IN TORSION TEST TO MAX. SHEAR

STRISS IN BENDING TRST FOR VARIOUS MATERYALS

Haterial Max., shear stress in torasion tes
.-z-- AR T - Ry & S S AN T gl oA s o < B W W SZDey S

O
v .

s Hax, shicar stress in beading tes

ﬁ!ﬁ

3 per cent Ni Steel , & ® 8 % & ¢ & 2 2 ® 4 & &t 4 8 @ 1.20
3=3 1/2 per cent Ni Stcel & &4 4 ¢ ¢ o o L T T T T 1,20
Cr=Va Steel , , . , . ® ¢ 8 & ¢ o o 2 & ¢ 4 0 4 e & & 1.20
3 1/2 per cent Wi=Cr Steel, Hormal Impact , 4 ¢ o ¢ » 1.305
3 1/2 per cent Hi=Cr Steel, Low apact o 4 e 6 o s 1,27
Wl =Cr =M StC’Cl, 60=70 ton . . . * o s o s s & s ¢ 1,03 ~1,17
Hi = Cr =« o StCCl, 7530 ton . 4 . ¢ 6 5 4 4 s e o 1.04
M e Cr Steel, 05«105% COM v 4 s o 6 8 o 6 ¢ ¢ o .. 1.175

.Conclusions and Recommendations

In view of the above evideuce, {t 1s recommended that the Von iiises
failure governing streugth .criterion be adopted for stecls with the noiomm
sucar stress theory include’ os an ~lternate. It should be noted that none
of these theorics of failurc cca eiplain the plicnoniena of fatizuc failure on
a theorctical basis. 1In fact, all of the above theorics have been developed
to explain the phenouena of static, rather than dyaamic failure., Therefore,
if onc wishes to adopt oue of these theorics for fatigue failures, vhich are
dynamic in nature, thc only justification for doinz so is the fact that core
ralation does cxist betucen the theorectical aand the axperinentel results.

Design Hethod for Cowbinced Stresses

Shigley (7) has precsented a nethod for the design of such nembors based on
the Von Miscs theory of failure, which, in view of the conclusion above, is the
primary choice. In Shigley's method, the stresses on the ordinary element shiovm
in Flgure 1.15 are used to solve for a mean stress and an altemating stress as

Reproduced from .
best available copy.
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PIGURE 1.16. MODIFIED GOODMAN LINE
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follows:
) n‘/ 62 -6 06+ 5-2 + 31:2 (1.3.5)
m xm Xm ym ym m
2 2 ' ;
8, -Vaxa - d‘xad'ya + c:rya + 3;: (1.3.6)

These stresses are now used in connection with the Modified Goodman line
of Figure 1.16.

The question now arises as to the applicability of the modified Goodman
line for all cases of combined-stress fatigue. In particular, Sines and Wais-
man (21), citing Smith (31), show that the effect of a static torque on the
alternating torsional fatigue strength is negligible until the torsional yield
strength is exceeded. This {s shown in Figure 1.17. Also, the effect of a
gtatic torque on the reversed bending fatigue strength shows the same trend
(21) in Figure 1.18. Forrest (22, p. 104) gives the same result,

Nevertheless, the modified Goodman diagram of Figure 1.16 indicates that a
reduction in fatigue strength should occur when a mean stress is superimposed on
reversgsed bending. :

In the case of a rotating specimen when the mean stress is a shear stress
induced by a shear stress induced by a steady torque and the alternating stress

{s a tensile-and-compressed stress induced by a ben@}nglyoment, equations 1.3.5

.and 1.3.6 become Sm = 3Zﬁ and s, " axa’ whereby V3 'S_ should be plotted along

8
the abscissa and Se along the ordinate of the modified Goodman diagram.

Further light may be shed on this problem when one realizes that the
previous figures are for test results from smooth specimens. Forrest (22) gives
in Figure 1.19 the results of Smith (31) which shows that for notched specimens
the failure points fall along the modified Goodman line, if it is drawn from the
endurance strength in shear to the torsional modulus of rupture., Lipson and
Juvinall (8) have noted the same result, and state, "Since virtually all actual
parts subjected to torsional loading contain stress raisers of some kind, the
above phenomena is of little practical importance (referring to phenomena of
Figures 1.17 and 1.18). For this reason the Goodman diagrams for torsiomal
loading (drawn in (8), Chapter 22, p. 315) are of the conventional form, which
agrees well with tests of notched torsional members."

Reference (32) gives results of actual tests on SAE 4340 steel, and it can
be seen from Figure 1.20 that the test results for room temperature, notched
and unnotched follow the modified Goodman line closely.

Recommendations for use of the modified Goodman diagram in specific cases
of combinations of mean. and alternating stresses are given in Table 1.3 and
1.4 based on the possible stress components shown in Figure 1.21.

When only alternating stresses are present, the equations to be used are
given in Table 1.3. When mean stresses are present, the Goodman diagrams which
ghould be drawn for each case are given in the Table 1.4. Note that Goodman
diagrams are not always drawn from the point Se to the point S . 1In some cases
we find Sse on the ordinate and Ss on the abscissa. The prope¥ procedure can
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be generalized in the following way:

I1f in the equation for alternating stresses, gnly a T, term
appears, the Goodman diagram should haveYﬁSse on the 3rdinate.
In other cases, plog Se on the ordinate.

1f in the equation for mean stresses, gnly a7 _ term appears,
plotvgs on abscissa of the Goodman diagram. Tn other cases,
plot S "on the abscissa. It must be pointed out that]3S = Se
andvgsg = Su when thf Von Mises theory of failure app icgS

Summary

The Von Mises theory of failure 1s recommended for fatigue, with the
maximum shear stress theory of failure as an alternate, The modifiqq,coodman
line is recommended as a conventional design methodology for combined stresses
in fatigue, and it is felt that this modified Goodman line can also be adapted
to design by reliability, as will be explained later. .

" "As a result of this study, it is apparent that there are some differences
from the standard Goodman diagram as it is usually drawn (7, ch. 5). The
various stresses which may be present on a stress element are shown in Figure
1.21. The recommended procedure to be followed for each case is shown in
Tables 1.3 and 1.4, = )

Now, with appropriate theorics of failure and methods of attack firmly
established, it is possible to proceed to Chapter 4 for the applications of
the design reliability methodology to cases of combined stress fatigue.




DESIGN EQUATIONS FOR SPECIFIC EXAMFLES OF GﬁNERAL CASE SHOWN

TABLE 1.3
' . IN FIGURE 1.21 WHEN CNLY ALTERNATING STRESSES ARE PRESENT
1 ‘ ,
S TRESSES APPLICABLE GOODMAN JUSTIFYING
PRESENT EQUATIONS DIAGRAM REFERENCE(S)
'
Tra Oxa < Se — SHIGLEY
OR Oya OR Uya < S,
— SHIGLEY
Ta Tqg < Sse
|
Tio 042 = OyqTya + Tye < Se — SHIGLEY
AND Jyq '
CASE 4 J
— SHIGLEY
2 2 2 2
Oxa AND | gyq — OyqOyq + Oya + 37 < Se ,
Oya AND ’
Tg
CASE 5 ,
2 2
Gg + 375 < Se ,
Oyxa OR , . 2 — SHIGLEY
Oya OR Oyg + 3Tg KSe '
AND Tg4 - ""'
NOTE: |IF WE TAKE Sgg= 0.577S, , THEN ALL OF
THE ABOVE ARE SPECIAL CASES OF CASE 4.
CASE 5 TABLE 1.l DESIGN EQUATIONS FOR SPECIFIC [EXAMPLES OF GFNERAL CASE |
., SHWN I¥ FIGURE 1.21 WHEN Se TS ALTERNATING A%D MEAN STRESYES ARE
e oo PRESENT
Oxa § Txm -Bg * Oxa 5 Bm ® Oxm SHIGLEY
OR
‘Tyo$aym OR 8g = Oyg + 8m* Oym 1
SU
CASE 6 r(asse - FOREST,
- or
LIPSON
TQ ¢Tm BO =Y-3'TG Se
; ” € JUVINALL
8y V3T '
®m m , ,
3 Sg 5, |

[

: i

LA
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If in eq. 1, T 1is the only component, plot ¥3s
f in eq. 2 T 1is the only compond
and T are the only existing
on the mean stress axis, instead

axis; othe

stress axis; othefwise ™
S__ on the alternating stBess axis®and s

plot only
of{3 times

rwise S .

Su. IfT

fic, ploty/3s

~ '
TABLE 1.}

’f--" ((X)NT.) . . g
STRESSES APPLICABLE GOODMAN JUSTIFYING
PRESENT EQUATIONS DIAGRAM REFERENCE(S)
CASE_7 N Se

Oxa ¢ Tm 8g = Oy 8 ?\E’T“ . NONE
OR Oya £ Tm | OB  &.= Oyq; 8m=foy (INFERRED
- R FROM ABOVE

' — CASE)
"",‘3 , SS = S';
CASE 8
_ Se
Oxa, 9xm, §Tm| B¢ = Oxai 8n-= Voxnf+375
, OR - SHIGLEY
o .
O_R ya, o-yms e ,80 = O'xy Sm = O'yn$+3 ™ .
Tm Su
CASE 9
Oxa, Oxm £ Tg, ?d-‘"; \xa® + 374°
Tm o > > S .
OR 8= \Oxm t+ 374 € . SHIGLEY
OR ,
— 2 2
%0, Oym ¢ 8g-= \/cryq + 374
To, Tm "Bm': V(J'ym2 + 3Tm2 i
' Su
CASE 10
k) Se -
. 2 2 2
ALL Bﬁz_VO'xo -O’xao-yq +0'y° + 3T° -
| 7 SHIGLEY
" 2 2 2
?m"_\/"xm' %mO%m + Oym 3t |
Sy
The mean stress cases can be géneralized by considering the following equations:
2 2 2
8a ™ Vaxa j o—xadya crya + 3 z'a Q)
s BVO‘ 2;-, o’o‘+o*2+3t2_
m Xm Xm ym ym m -

on the alternating stress
on the mean
gtresses, then

these quantities as instructed beforg, because the two approaches will
1¢ag to the same results.




CHAPTER 1.4

APPLICATION OF TIE DESIGN-BY-RELIABILITY METHODOLOGY
TO CODINED-STRESS FATIGUL

Introduction

The key to designing by reliability i3 to realize that all important de-
sizgn parameters must be treated as distributfons. Values of stress, such as
Oxgs Oya, etc., and values of strength, such as §§, Sg, Sge, etc., must Le
taken as distributiony rather than single velues. Once these modifications to
conventional design methodology are made the basis for the design by reliability
methodology is established.

The distributions of these quantities may not be easy to find. Sections 3
and 4 of this report will be devoted to deccribing in detail how such distribue
tions may be obtained. In this chapter, in order to develop the methodolozy '
further, we will assume that the distributions are given.

The fatigue problem in general amay be broken into the time-invariant and
the time-variant cases, In Fig., 1-9, the portion of the S«N curve to the right
of the knee @ 106 cycles is assumed to be a reglon of time-invariant strength,
that ic S; and oy, are assumed to be constant in this region. However, the
region to the left of the knee of the cuxrve is a tiuwe-varlant reglon; that is,
the mean and standard deviation of the strength distribution vary with time,

The illustration of the design By reliability methodology will begin with
sone examples of the time-invariant case,

The Time~Invariant Case
Example 1.1

The first case {8 that of a part rsubjected only to reversed bending.
From Figure 1.21, the following stress couponents would raesult:

Oyg $ 0
Oy ® aym = oya L] T * T, = 0 .

This is case 1 in Tﬁble 1.3. Assume that the endurance limit of this part is
known frou laboratory tests and is given by a normal distribution with

Be = 50,000 psi
O5q ™ 3,000 psi

Purther, take thc case where the applied stress can be described by
BTw 30,600 psi

o, = 5,000 psi
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Then from equations 1.2.24b, and 1.2.24c,

£ = 50,000 - 30,000 = 20,000 psi

2
[+ *1Y% x 1,000

(o3
s =
= (5.83) (1,000)
= 5,830 psi
Now, 7
§ _ 20,000 _
t = - G—g- 5,830 3043
For which v .
R= 0.9°964

Figure 1.22 depicts the sﬁress and strength distributions for this part.

Example 1.2

Take now the case of reversed bending combined with a steady torque.

Referring to Fig. 1.21, the following stress components would result:
Sya #0

tm#O

6 mg =6 =T =0.
xm ym ya a
This corresponds to Case 7 in Table 1.4, therefore we will use the
Goodman diagram for Case 7, but we must now treat the stresses and strengths
as distributions rather than as single values.

Figure 1.23 depicts the failure governing stress and failure governing
strength distributions. The Goodman diagram is taken conservatively to be a
straight line joining the distributions for § andf3s_ =S . On this con-
servative basis an estimate of the lower 1imif of the actulll reliability is
obtained. The expected value of the actual reliability will be detcrmined
when the truc strength distribution is gencrated from the experimental results
of this research. '

E—.,,,;._'.,...,;‘...‘L-“ TR T T e T O e ST AL TR TR - T T




for design life of 104 cycles
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Figure 1,22 S-N DIAGRAM WITH STRESS AND STRENGTII DISTRIBUTIONS
FOR EXAMPLES 1.1 AND 1.4
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Figure 1,23 GOODMAN DIAGRAM WITH STRESS AND STRENGTI
DISTRILUTIONS FOR EXAMPLE 1,2
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The distribution for the failure governing strength, S, can be estimated

from -this lincar assumption by scaling off from Figure 1.23, and it is given
by

S = 22,000
6 = 2,000

The distribution of the failure governing stress in this case is not easily
determined. WNote that this_distribution will be a combination of the distribu-

tions of s = qu and s =Y3 T . Let us assume for the present that the failure
governing stresS distribution 1s a normal distribution with

’ 5= 15,000 psi
6= 2,000 psi
s
at a stress ratio of -;2 = 1/2, as shown in Figure 1.23.
m

Then from equations 1.2.24b and 1.2.2%c,

’ £= 22,000 - 15,000 = 7,000 psi
[(2)2 r @23Y% 1,000

[3

= (2.83) x 1,000

a
(]

= 2,830 psi
Now,
% .. 71000 _
ST 7 R

from which
R = 0.9861062

Note that the reliability is relatively low. In this case the factor
of safety for the part is

F.S. = 22,000 _ ;.
15,000

which is also relatively low.

Example 1.3

Consider now the case of a parf which is subjected to an alternating o%,

a8 mean g, and a mean and alternating T . Then we have




IS A

(

d’xa"O

dxm#o

7, ¢ O
T, * 0
0 =¢ =u
ya  “ym
This 1s Case 9 of Table 1.4. -

The failure governing strength is again taken conservatively to be a linear
relation between the alternating stress failure governing strength and the mean
stress failure governing strength. In this case, the appropriate alternating
strength is S , the endurance limit of test specimens which are subjected to

reversed bending alone. The appropriate mean, or static, strength is the static
ultimate strength of the material.

The failure governing stress can be found by synthesizing the various com-
ponents of stress the part is subjected to. If the Von Mises-Hencky (distortion

energy) theory of failure is used, then the appropriate failure governing stress
formulas are

(1.4.1a)

(1.4.1b)

If the maximum shear stress theory of failure isAused, the appropriate
equations are :

, . s 2 2 .
. 5, = (—’2-‘3) + 'Cm 4 (1.4.2a)
) 2 ,

: 2 . .
o1
g = (_m) + 72 : (1.4.2b)
m, 2

Strictly speaking, design by reliability would call for the synthesis of
the distributions of ¢ , » 6, , and T as functions o&f random variables by
use of either equation$§®1.4%] oF'1.4.2, mHowever, let us defer the discussion
of this rather difficult problem until the next Section, and assume that we can,
for the present, combine the means of the stress components, and assume that the
resulting distribution is normal, with a standard deviation equal to 15 per cent

)

of the mean.

Choosing some values for purposes of illustration, let

0, = 16,000 psi

Za = 8,000 psi
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d;m = 10,000 psi

Ta = 2,000 psi

We will consider two solutions,

one using the Von Mises-Hencky theory of
failure and one using the maximum she

ar stress theory of failure.

Von Mises-Hencky Theory of Failure Solution

From equations 1.4.1

s, = V(16)2 + 3% x 1,000
1

= 21,170 psi

§ = L/ (10)2 + 3(2)2 x 1,000
™

= 10,580 psi

Plotting the above on Figure 1.24, the mean of the failure governing stress
is given by .

) -|/s 2 405 2. ‘/(21.17)2+ (10.58)% x 1,000 = 23,600 psi
4 ™1

Taking its standard deviatibn as 15 percent of.the mean,
6. = 3,540
!
The failure governing strength distribution is obtained b

‘ ¥y graphical,
linear interpolation from Fig, 1.24 as

S = 40,000 psi
o5 = 2,000 psi

From equations 1.2.24b and 1.2.24¢,

§= 40,000 - 23,600 = 16,400 psi

o, = ‘/(2)2 + @3.59% x 1,000

= 3,800 psi

and
toa - £ ol 16800 o, 4,
| o 3,800
from which

R = 0.948439




5= 140,000 psi

o= 2,000 psi

5000 psi
[0 ]

= 2,500 psi
) |
T

5,- Ls
(O

7
for a design life of 10 cycles

% | 51- 23,600 psi
/‘ﬁ/’ dsl= 3,540 psi
<

/.

Alternating stress » Kpsi

| 20+
[ |
2 I
2 !
2 \§ Z . . ._
~ AN [ 8, 12,530 psi S,= 80,000 psi
< Tz j . |
o .8 Os,” 1,880 psi O'su" 4,000 psi
g a7 2 \
0w 7] —~
. r -, : : : I
0] 20 Lo 60 ' 80
S
m
~={ g S .
Mo
5,390 psi
— Sy T
o
10,580 psi
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Maximum Shear Stress Theory of Failure Solution

The faflure governing stress is now given by cquations 1.4.2 as

02 2
5, = (-1-) + ()  x 1,000
a 2
2 L
= 11,300 psi s
.
R 2
o, = (-12-) + (2 x 1,000
= 5,390 psi

The failure governing stress mean is then given by, as in the previous case,

2 2
g, = V (11.3) " + (5.39)° x 1,000 = 12,530 psi

The standard deviation is again taken to be 15 percent of the mcan or

c = 1,880 psi
®2
The failure governing strength distribution; as obtained from Figure 1.24,
is given by : ’

e

S = 40,000 psi
ds = 2,000 psi

From equations 1,2.19b and 1.2.19c, ’ ?

o £ = 40,000 - 12,530 = 27,470
2 2 Do
S -V ° + (1,88)° x 1,000 = 2,750 psi
and k1
£ = S = 20470 o 04
Z 2,750
from which
R = 0.90%

Interestingly enough the maximum shear stress theory is not conservative for
this example.

These examples should serve to illustrate the design-by-reliability methodology
for the case of "infinite life" design. The other combination of stresses which
may arise as special cases of the stresses illustrated in Figure 1.21 can be
treated in a similar fashion.
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~ Now we shall proceed to discuss some examples for the time-variant, or
"finite life", case.

The Time-Variant Case

The main difference between the time-invariant and the time-variant case
is that for the former, the appropriate endurance limit, § , of the material
1s used, while for the latter the finite-life fatigue streﬁgth, S , of the
material is used. In Figure 1.22, this distribution is shown for 107 life

cycles. The generation of such a finite-life distribution will be considered
in Section 3 of this report.

Example 1.4.

Consider Example 1.1, but4instead of designing for infinite life, let us
design for a finite life of 10 cycles. As shown in Fig. 1.22, let us take

S = 85,000 psi
dS = 4,500 pSi -
8§ = 30,000 psi
o, = 5,000 psi
Then, .
E & 2 a. 85,000 - 30,000 e - 22,000 . _ g gy
T g 5 > 6,730
I/(a,s) + ()% x 1,000
and
R = 0.9%

This compares with R = 0.933964 in Example 1.1 for a life of 107 cycles.

If such a high reliability is not desired and the target reliability for this

part 1s R = 0.9995, then the mean applied stress can be incrcased to § = 108,200 psi.

This may be calculated as follows:

~
-

If R = 0.9995 then t = - 5; = - 3.481, fromnormal distribution area tables.

¢ 3
Assuming the strength distribution remains the samc, as it should, and the stress
variability remains the same, then

-3.481 = 82.080 - ¢
’

or § = 108,200 psi

This says that the same part may be designed to much higher stresses, hence

with smaller sections, lighter weight, and presumably lower cost. Hence the great
value of designing by reliability.

The design by reliability procedure for finite life when mean stresseg are
involved is analogous to that of infinite life. However, instead of using the
distribution of S on the ordinate of the Goodman diagram as we did in Example 1.2
and Fig. 1.23, we use the appropriate finite-life fatigue strength distribution.
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Example 1.5

Consider again the part of Example 1.2, but let us design it for a finite
1ifc of, say 10% cycles. Now the Goodman diagram will have the finite-life
fatigue strength determined by tests imposing reversed bending and steady
torque on the specimen, plotted on the ordinate.

Referring to Fig. 1.26, the strength distribution is

T ek s TR S e T 2 i

§ = 26,300 psi

65 = 2,300 psi

The stress distribution is taken to be the same as that of Example 1.2, or ;

s = 15,000 psi

dg = 2,000 psi

Then, _ _
Cw - S . 26,800 - 15,000 __ 11,800 = - 3,82 B |
% }/(2.3)2 + @)% 1,000 100
and,

R = 0.938665

This compares with a R = 0.9861062 in Example 1.2 and shows an increase in
reliability from the infinite life case, as would be expected, because we wish
the part to last a substantially fewer number of cycles.

It should be obvious by now that to treat Example 1.3 as a finite life, or
time variant problem, one would nced to use the finite life endurance strength
at the desired number of cycles on the ordinate of Fig. 1.24 rather than the
endurance limit, The the solution would proceed the same as in Example 1.3.

Summary

In this section, the differences, and also the similarities, in the design
by reliability methodology as compared to the conventional design methodology,
have been pointed out. Conventional design methodology forms a framework for the
design by reliability methodology once it is realized that in designing by
reliability the important parameters of the design should be treated as distributions
rather than as unique values,

The various thecories of failure for metals have been reviewed and the dis-
tortion encrgy theory of failurc has been shown to apply best to alloy steels,
with the maximum shear stress theory of failure as an altecrnate.

Several illustrative examples which highlight the concept of designing by

reliability have been given., However, scveral important questions still must
be answered, such as: '
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Figure 1.26 GOODMAN DIAGRAM OF STRESS AND STRENGTH DISTRIBUTIONS FOR EXAMPLE 1.5
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1. How can the failure governlng stress and strength distributions
be obtained in actual design practice?

2. How can conventional engincering formulas be uged when distvibutions,
rather thau unique values, are involved?

3., How is reliability founc wlicn the failure governing stress and the
failure poverning strcngth distributions are not norwal?

These, and other questions, are discussed in the following Sections. 1In
gome cases, answers are given; in others, the answers must guait further ree-

gscarch and developament on the methodology.

One vital area which will be discussed next im Section 2, is that of
determining functions of distributions.
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SECTION 2

FUNCTIONS OF RANDOM VARIABLES
FOR
STRUCTURAL RELIABILITY APPLICATIONS
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CHAPTER 2.1
INTRODUCTION

This section presents the recults of a literature search and theoretical
study which hes been conducted 80 that the videly scattered results of the
work on functions of random variables which are thought to be important for
atructural reliability applications can be assembled and orgenized.

Freudenthal (1, P 322)* has poluted out that {t ig futile to try to de-
cide on the basis of data analysis which of the many Jdistributions bast
describe a structural design quantity, such asg fatigue life. He recommends

. that such distributions be selected for study on the basis of physical reason-

. ing, Therefore, one portion of this section was devoted to studying works such

a as (2-6) which do attempt to define or select significant distributions for
8tructural reliabilicy applications., The distributions given in Chapter 2.2
were selected, and they are discussed further in that chapter,

Chapter 2.3 contains the mathematical definitions of the distributions
selectad, with comveats about their properties and parsmeters.

In Chapter 2.4, mathematical concepts and definitions are prasented. Thasge
are bastic statistical mathematics needed for understanding the work {n this
Section., Then tha mathematical methods which are important for the analysis of

; functions of random variables are presented in Chapter 2,5, These include:
a S 1. Algebra of Normal Functions Method
2. Change of Variable Method
3. Moment Generating Function Method
4. Fourfer Transform, Convolution, and Inversion Mathod
5. Mellin Transform, Convolution, and Inversion Method
6. Characteristic Function Method

7. Cumulative Distribution Function Method

8. Monte Carlo Method

" .
l Numbers in parenthesis refer to REFERENCZS at the end of this section.
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Chapter 2.6 prosents some mathematical Jerivations and significant results
for the more fmportant functions, and utilizes the techniques which arc thought
to have the most promise for future studies. In particular, the method involving
the Mellin transform (7), (3) is belicved to have great potential for treating
products and quotients of random variables because of its suitability to both
analytical and digital computer solution (7). .

Listed here are some of thie results which had not come to the authors'
attention before the beginning of this current study and which are thought to
be important to the area of structural reliability:

1. The p ¢ £ of products of n independent normal varisblee
N(0,0) for =& <10, (7).

2. The p d £ of the quotient of two independent gamus varicbles
(7).

3. The product of two independent beta variables of the first
kind (9).

4. fAn extensive work on the quotients of normal variables (10).
5. The result for 1/x vwhere x 1s lognormal, or L{u,os ), (3).

6. The product of two lognor;al variableo (3).

7. The quotient of two lognonual variables (3).

8. The result for cx” where x 1o L{u,0 ), (3).

This sumaaxizes some of the highlights. ' L

In the 1l4terature of statistical thecory, one finde much work on functions |
of randon variablea which {8 quite useful in statistical problems, but is not i
especially suited to solving problews in structural relfabilfty (11-13). There- |
fore this section represents an attempt to deal with functions of random
variables which will be ugeful in solving structural reliability problems. '

As an example, consider the following situation. The endurance atreangth
of & part in actual service, subject to fatigue loading, 1s given by (14, p. 166)

]
Sg = 8t k, ko vueniky | (2.1.1)

qrhe symbol N(u,c) stands for Normal distribution with mean p and standard
i deviation o. See the List of Symbols for other eymbols,
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vhare;

se = endurance strength of the part in service.

§ ' = endurance strength of the material from which the
part is made, based on laboratory Cests on a standard

] specimen.,
kgsees,ky = factors which account for the differences between

laboratory coaditfons end service conditf{ons.

Structural reliability theory demauds that all of these quantities be
treatad as distributions. The question now bacowes, given the distribution
of 8 'y, and of the kg,...,kp, what is the distribution of the strength of the

part, S 7 Once thia strength distribution 1is knowm, it can be combined with

the atross distribution to find reliability as described in Ref. (15). Tuis
poses the problam of finding the distribution of the product of a number of
distributions which are not necessarily identically distributed.

Consider another protlem. The safety factor can be defined on a statisti-
cal basis in the following way (16, pe 9).

wvhere:

r

v - the safety factor B
§ = tha strength of the part or structure
8 » tha gtress on ths part or structure

and the throe varisbles are all distributed.  Then the probability of failure
ts defined as s

P. 2. P ( v <1) | (2.1.3)

Thus, once the problem of the quotient of tle two rvandom varfaebles S and s
has baon solved, the reliability of the part or atructura can be evaluated.

It {e easy to sece that all structural formulas, such as

- -X-‘ (2.1.4)

8 » ""‘)?' (2‘105)

and 80 on ad infinitum can be put on the basis of all of the governing loads,
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dimensions, and factors being coneidered as distributions rather than a8 gingle
values,

Another problem which might be treated by application of tha functions of
random variables is that of MRB (Materfals Review Board) action. Prequently
an engineer in practice is called upon to decide what is to be done with parts
which are slightly out of bluaprint tolerance. Take the simple example of a
round xod in axial tension. From equation (2.1.4),

- -E (2.1.6)

6™
(n/4)d?

>y

Suppose now that somo of the pleces are found to be of smaller dismeter than
specified by the blueprint. The engincering rapresentative to MEE must recom-
wend as to the disposition of these parts. Currently, this ts not doue on a
rational basis; however, by use of functione of random variables, the engineer
can quantitatively evaluate the effect of a certain numbar of undersized parts
on the distribution of dianeters 4, of parts golng into service. Ie could
then evaluate the effect of this on the distribution of stress, a. Then, the
effect on part reliability could be evaluated, Finally, the effact of part
reliability on system relisbility would provide a rational and quantitative
basis for declding whethar the parts could be used or must be rejected. This
could ba a valuable tocl, for frequently such decisions are made on parts which

The above examples will provide a motivation for the study of functions of
random variables as applied to structural relliability problems, This eection
represents a beginning and wmuch work remains to be doune in this area. However,
some very interasting results and techniques have been found, and we shall pro~
Ceed with a discussion of them. Ve ghall begin with a Jfscussion of reagons
for selecting for furtler study certain distributions which are thought to be
important to structural relisbility theory. .




CUAPTER 2.2

SELECTION OF DISTRIBUTIONS
WVHICH ARE IMPORTANT TO
STRUCTURAL RELIABILITY

Introduction

We shall now proceed to discuss the reasons for the selection of certain
distributions for further study. Such arguments will usually proceed on the
basis of physical principles involved. Occasionally, the conclusion will be
based on analysis of data, since this will serve to reinforce the decision to
include the distribution, 5

4

The Nommal Distyibution

The nomaal distribution must be included in any discussion of structural
reliability. Haugen (17) has developed an Algebra of Nommal Punctions by which
structural reliability problems are solved, assuming the distributions of all
the lmportant varfables to be normal. Haugen has also published data on the
distribution of strengths of structural materials (15) assuming this strength
to be normally distributed, and giving its mean and standsrd deviation. Herd
(4, p. 5) states that the normal distribution (of timas to fallure) has been
observed for slioes, clothing, furniture, most simple electronic aud mechanical
parts, and it can be expected for simple parts with homogeneous deterioration
properties. It is coamonly used 1n stress - strength applications.

The normal distribution may be appliceble Lf failure occurs after an essen-
tial substaice has been used up. The time to failure could be proportional to
the amount of the substance in the speclimen. If the amount of the substance

varias among specimens according to a normal dietribution, then their life-times
would be normally distributed.

In the Conclusions of his PhD Dissertation, Heyes (6, p. 121) concludes
that the distribution of buckling strengths of thin-walled cylinders is normal-

ly distributed. His conclusion is based on the analysis of large numbers of
test rasults.,

Saith (20, p. 85) based on his analysis of a large number of fatigue tests
on small vires concludes that the normal distribution fits the fatigue strength
Lest i{n tle majority of cases.
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Ia sumaary, we lave tlie physical reascning glven by Herd (4), and the
anglyscs of Hayes (6), end Smith (20) with vhich to conclude that the normal
distribution represeats the streagth of many structural moterlsls.

It is jencrally agrecd that strengths of matericls cas be regrescnted by
the normal lictributieon, a2nd this makes their inclusion in structural relia-
bility vork a nercessity. Nowever, many distributions importaat to structural
reliability are mozhodly ckewed, and therefore cre not normal.

The lognormal bistribution

Parzen (%, p. 7) “iscusses the lognormal distribution in relation to {ts
applicability to fatigue life. e mentions that various probability molels
glve rise to the lojnomrmal diotribution. These are surmarized in Altchison
and Browm, (3, Ch. 3). The most important of these models is the theory of
proportionate effect fiirst advanced by Kapteyn in 1203, Let Xl, vesy Xn be

a sequenece of raudom variables vhich represent the magnitude at successive
times of, ooy, the leagth of a crack resulting from fatigue loading.

Suppose that cach magnlitude En is related to the preceeding magnitude
by the relation '

v

xr‘ - :\n'l = anu_l - ‘ (202.1)

vhera €s ey en are independent randow varizbles. Then the change

- . e ) .
(Xn xn-l) is a random proportion €, of the previous value xq-l'

From (2.2.1) {t follows that
Xn e (14 en) Kn-l w» (14 en) 1+ Gn-l) eee (1 # ez) Xl (2.2.2)

From (2.2.2), one sees that for largze n, Xn is the product of a large

number of independent factors, no one of vhich is dominant., The central limit
theorem of probability tlea sliows that log xn is rornally distributed, €from

vhich {t follows that xn is lognormal.

The lognoraosl distributlon has been advanced by Freudeathal and Gumbel (20).

Congider counsecutive stress cycles Sl’ S.p aes Sn applied to a specimen and

let An Le the disrupted area within the specimen. Assuming a proportionate effect,

Bem b = S
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then the extent An of damage after n stress cyclec is approximately log-

normal for large values of n. Parzen states however, that 1f one is interest-
ed in the number () of stress cycles producing fallure it anpears that the
probatility li.trilution d{s) 1s, Insolar as theoretical considerations are
toaceraed, wmore lik:ly to be deseribed by an extreme volue or Ueibull yather
than a lognormal distribution. ’

Herd (3, p. 5) gives the following reasoniag. The lognormal distribution
applies to situacioas in whiclh several !ndependent factors influence the out-
come ¢i an event not additively but accoxding to the wagnitude of the factor
ana the age of the itom at the tims ia which the factor is applied, If the
effect of each impulse ig divectly propertional to the monentary age of the
itom, then the loz x is noraally distributed. In other words, x {is log-
nornmal,

‘ *

Aitchison and Drovm (3, p. 104) cite Day(55) who states that the results
of enlurance tests of wany kinds (measured in temas of efiective length of life
of a material or piece of equipent) are fraquently loznormal.,

So it 18 seen that the lognormal distribution must be included in any study
of structural rellability,

The Weibull Distribution

The principal argument in favor of the Veibull distribution is itg ability

to adapt to fit many shapes, depending on its parameters., This is 1llustrated
in Figure 2.1. ;

Also, Tarzen (4, o. 3) discusses the extreme value distribution, of which
tiie Veitull dlutrivution is a special case., The cxtreme value distribution
arlses iu the following way .

Let Xy sy X, be a sequence of independent observations of random
variable X, ' . -

-

let ‘Yl - X1
- -i‘ :'
Y2 e maximm («1, xz)

. .

Yn = naniaum (Xl, X2)

*
Reference (55) given in Aitchison and Brown.,
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Z2 = minimum (X , X ) -
2 1’ 2)

- .
) L

Zn = minimum (xl’ 12, sesy xn)

F A4

The random variables Y and Z are the extreme values of the observations X
n n

sos X o The asymptotic distribution (the distribution for large values of n)
of the a:ftreme values of In and Zn can be shown to be one of several types, de-
pending on the distribution function of the parent Xl, ceey xn. For a complete

discussion, see Gumbel's book (21), The Weibull distribution is the Type III
asymptotic distribution of extreme values, and is the asymptotic distribution
of the minimum of a large number of independent observations Xl s soey Xn of a

random variable X which cannot take values less than some lower limit 7
If one knows the exact distribution of the independent observations 21, .o

+¢y X, then one can write down an exact expression for the distribution of their

values. The virtue of the theory of extreme values 1s that it provides an
spproximate method for evaluating, under a minimum of assumptions, the distri-
bution of the maximum and minimum values in a sample . .

Bpatein (22) and Freudenthal and Gumbell (23) have stated the physical
assumptions under which one may expect the breaking strength of a material to
posess a Weibull distribution. Roughly speaking, the assumptions are that the
strength of the specimen is determined by the worset flaw among the larpge number
of flaws present in the specimen. Flaws are assumed to be distributed random-
ly throughout the material. The size of flaws is assumed to obey a probability

distribution of type suitable for the application of the asymptotic theory of
extreme values.

The Gamma Distribution

Herd (L, p. 6) states that the gamma distribution has been used to describe
lifetime of electronic and mechanical systems. The gamma distribution and the
Weibull distribution each have the characteristic of describing a situation in
which the failure rate may be constant, increasing, or decreasing so that these
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two distributions can be used to describe phenociena which have widely different
failure rates. Becausa of this ability, these two distributions have been
proposed as appropriate for systems. Both appear particularly appropriate when
we are dealing with a system where the deterioration mechanisms are gradually
realized and controlled by redesign. _

The germa distribution is of particular interest when we consider redun-
dant eystems whers each system has a constant failure rate. If we have per-
fect switching so that the redundant elements are inactive until called upon,
i.e., in standby condition, the distribution of waiting time until all K systems
fail can be represented by the gamma distribution. .

Herd makes & further interesting statement to the effect that to date th
multiparameter distributions are excellent in describing what happened but are
of limited value in making inferences sbout how to improve systems. Numerous
examples are present in the literature where the Weibull or gamma distribution
can be used to describe data which were generated from heterogensous populations
or by heterogeneous physical processes but these lead to gross errors when ex-
trapolated or interpolated for application to supposedly similar situatlons.

In other words, care must be used in making reliability predictions, no matter
how well past results have been described, when using the adjusted multi-
parameter distributions. :

Birnbaum and Saunders (2L) also discuss the case when times to failure
follow the gamma distribution.

The gemma distribution, like the Weibull, has great flexibility. 3See
Pgure 2.2. It is included in this study for this reason, and for the physical
reasons mentioned above.

The Beta Distribution

No papers which give physical reasons for the use of the beta distribution
have come to the attentionof the authors. Its incluslon in the study is a
result of the following reasonings An objection to, and a shortcoming of, the
lognormal, Weibull, and gamma distributions is that they extend to infinity in
the positive x direction. It would seem logical that a distribution which
had both an upper and lower bound, such upper and lower bound being adjusted
by the parameters of the distribution, might better describe certain variables
such as, for example, the diameter of a rod. Such a rod in service would have,
for all practical purposas, a definite upper and lowsr limit on its diameter.
In a conversation with the authors, Dr. Jerry L. Sanders, of the Systems Engi-
neering Department at The University of Arizona, suggested that the beta distri-
bution had this attribute and should be considered. Therefore it was included
in the present study.

Estimation of Parameters of Distributlons

No theory which is developed, no matter how elegant and correct it may be,
will be of any value in structural reliability if the engineer in practice can-
not apply the theory in a reasonably stiraight forward manner to get a final
mmber. Therefore a comment about estimation of distribution parsmeters is in
order, although this subject will not be discussed in detail.
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£ waximem likelibood estimate for Che parcacters of the nowmal and loz-
nornral distritutions is easily obtained., See for exnmple (U5). It tha case
of the Trelbull, ganma, and beta distwibutlous, the situation {u not quite so
fortunata. The follouiug; references are suggestaed,

Notribution Referenco
Vellull {(26) (49)
Gamma (25-23) (49)
Beta (47)

The ease of estimating nonaal and lognoimal Qistribution par.mm.‘ers and
the extencive \g_gbles vhileh exist fovr thew hove causes them to La entremely
popular. llovever, carc st be tolien wot t,o wse these distribuiiong cawveless-
1y. Structural reliability vesults way Le saonaltive to thoe distvibution which
C y Y

is chiosen (6 . 121 29 Oue of t,x_ surposes of studles such aag this is
s P P

to ifuvestizate the approprin Le cholece of diztuilbutions based oun logleal ox

physical reasaning.

Suaary

A recent swmary of vork in this narticular arca is given by Zac (49).
Rao shous that the "chain model” theory of failuve, vherz oo iftem is assumed
to coaslst of mary sub items, the failure of tle weakest ouc cauuing a failure
of the {tea, lead either to the Vveibull dstribution or to Curllal Mstribution
(azymntotic distriburion of Type I). The "rope nodel’ wherehy cach lten 1s
assumed to consist of many parallel strands, and fallues Joes wot occur until
all strands are broken, is showm to lead to ecither the gauma or the noraal
distribution. Tals paper also glves mctlwds for cstimutixw the paramcters for
these distributions, and provides on cucellent summary veiereuce for the vork
discussed in thils Chapter. Tased oun the works discussed above, the folloving
distributlons have bLeen selected for further study.

(1) lMormuel
(2) lognormal

(3) veibull

ced from
ilable copY. U

Reproduc
best aval

{4) Gmasa
(5) Beta

The literature esarch and theoretical study concentrated on results for these
particular distributions and on mathematical methods which would handle these
distributions. Before discussing these methods and results, some unecessary
mathematical concepts will be discussed. This will be done in the next Chapter.

v il
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CHAPTER 2.3

MATHIMATICAL DEFINITION OF IMPORTANT DISTRIDUTIONS

The Normal p 4 f

The norwal distributien p d £ is given by

ne

i(x)

o e o5 |G (2.3.1)
o _/<n .
where;

o iy €w

K is5 the wmean of the dlstribution, and
¢ is the standard deviation

To estincie the parameters of the dJdistribution from N observaticns, the
following formulas are used

Y

w= I x (2.3.2)
1=
N - v}
N 2
o=fZ (x - u (2.3.3)
iml
N

If there cre less than 25 observations, sn estimate for the standard devia-
tion should be mado by using

N 2
{i=l

-1
Ve shall denote the normal distribution by N(M, o).
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The Lognormel p d £

Tha lognormal p d £ is defined by

() =
vhere: o< x < @

1
~  axpf- (2.3.5)
xcm 20 2 ;

e

Aftchison and Browm (3) 18 recommended for an excellent discussion of the
lognormal distribution.

The parameters are the mean u and the standard deviation o. These
can be estimated from N observations by

ue ;“- p log ¥y (2.3.6)
frl
N Te
om/T - (log x,- w2 2.3.7)
1m]
N

If N 19 less than 25, the following equation should be used to eatimnte.thc
standard deviation

u 2

z (logxi - p) 7

il

O = -1 : (2-3-8)

The lognormal distribution will be denoted by L(w, o).

The Weibull p d ¢

The Welbull p d £ 15 defined by

-t - (xey )P
f(x).-i-(-’?t) e (xq) | (2.3.9)

7
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where: Y s < 0
Y 1is the location parameter > o
¢ 1is the ghape paramzfer > o
n 1s the ecale parameter > o

The mean of the weibull distribution is given by (31),

unmean-\c-l-n”‘(ld-%)
‘ L
and the variance of the Veibull distribution is given by

2 2 2 2 1
o ri =1 - ' [1l¢ =
. ( * ﬁ) ( p
vhere TI'(%) is tho gamau function of ¢ defined by

F(+1)= [ e x dx
Tables of the gamma function can be found in Ref. (32).

The Weibull distribution will be denoted by u(y, B, ).

The Gawma p 4 £

. ~x/n
£(x) = & ,ﬁ_e+1
' r{g+1)n

where: o <x < ®»
n 1is the scale parameter > o
p e the shape parameter > (-1)
The mean of the gamma distribution is given by (30, p. 93)

Be(f+1)q
and the variance by '

o’ = (g + 1) n2

Ve shall use G(@, n) to denbte the gamma distribution.

(2.3.10)

(2.3.11)

(2.3.12)

(2.3.13)

(2.3.14)

(2.3.15)
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The Bata p d f

There are two kinds of beta distributions, definod ae follows.

The beta distribution of the first kind is given by

1 a-1 b-1
f(x) = B, by ¥ (1 - x)
ro<x<1l
8>o0

vhere; b>o

 Be, by 2 (g +bb)

The beta distribution of the second kind is given by
&1

£(x) @ e Fen s
Ba, b)(L + )2+ D

(2.3.16)
(2.3.17)

(2,3.18)

These two p d £'s will be denoted by Bl(a, b) for the bata dietribution

Sumnary

of the first kind and by Bz(a, b) for the beta distribution of the second kind.

The mathematical formulas of tha p d £'s selacted for future study have

been given. Now we shall proceead to a discussion of mathematical concapts
and definitions.




CHAPTER 2.4

MATHEMATICAL CONCEPFTS AND DEFINITIONS

Introduction

In thie Chapter some assential concepts of mathematical statistics will
be discussed, An excellent book by Yogg end Cralg (30) gives a more complete
discussion. The basic concepts presented bere will be aessential to understand-

ing the mathematical methods used to study functions of rundom variables dis-
cussed ia Chaptar 2.5.

The Probability Density Punction

The probabllity density function for a continuous random variable can he

defined {n the following way (30, p. 17). Let the one - dimensional set A
be euch that tl.e Riemann Integral .

jA £(x)dx = 1
and the following conditions are met: 7
le £(x) >0 for all x in A.

2. f£(x) has at most a £inite number of discontinuities
in every finite {ntexval that is a subget of A,

Then if the probability of a set a which {8 & subset of A {¢ given by

P(a) » Pr(X ¢ a) = fa £{x)dx

X 18 said to be & random variable of the continuous type, and f(x) is caid to

be the probabilfity dansity function of X. The abbreviation p d £ will be used
for tha probability deasity funetion. :

The Cumulative Distribution Function
The Cumulative Distribution Function (c d £ ), denoted by F(x), can be de-

fined as

RB(x) = Pr (X = x)

85




E

g e o s e, e X1 !

o b
= —

! ‘

i ‘

-
.

and i3 related to the p d £ by

X
F(x) = [ - E(x)dx (2.4.1)

&

for the coutinous type of raudom variable.

, Mathematfcal Expectation

A useful concept in problems involving distributions of random variables
is the mathematical expectation, (30, p. 34). If & continuous rendom varie-
ble has p d £ §£(x), and u(X) L8 a function of X such that

I {,
£ ux) £6x) ax ) (2.4.2)

exists, then the integral (2.4.2) is deflined to ba the mathematical expectation
of u(x). This is Jdenoted by u(x)].

Tha extension of the definition to functions of more than one variable
follovws the expected pattern

1
E(U(RI: -f': Xl),
Y 1 »
- 10:; .A,A;: i:-;u(xl, coo,'xn) f(xl, sesy xn)dxlo-odxn (20403)
Special Mathematical Expectations
letting u(x) = X vesults in

| k
E(X) = Lé.xf(x) dx i (2.4.4)
- ./ - -
which i3 the mean value of X. Adopting the symbol

E(X) = p

we can further definas
g [(X-p.)z] o {7 (x-w? £(x) dx | (2.4.5)

as the variance of X, denoted by'qz.




C

4 third special mathematical expectation is called the moment generating
function, which {a given by

z(e"‘) o [2 ™ £(x) &x (2.4.6)
We shall adopt the symbol M(t) for the moment generating functiom, that is
M{t) = E (etx) 7

The moment-generating functioan does not alwayc exist, becsuse there are
some distributions which do not have a moment-generating function. However,
when it does exist, a most Lmportant ctotement can be made. The moment-generat-
ing function is unique, that Is, if two rarclom variables have tle same moment-
generating function, then they have fdentically the same distribution (339, p. 40).

The moment-generating function gets its name from the following properties :

Consider:

M(t) = E(e"‘ )

!u' (t) ' tem is the first moment of the distribution, or

L (t) ' . the mean

; t=0 l¢ the second moment of the distribution
th '

moant of the distribution

Therefore, any moment of the diatribution can ba generated by taking the desired
derivative and sctting t equal to gero. Hote also that

2

oon
R () l t=0 ' 13 the n

‘G o U''(e) -u
- K'"(0) - M'(0) (2413

Marginal Distributions (30, p. 54)

&4 f(xl, x2) ig the joint p 4 f of two random variables XL and Xz, the
evant a < xl <b, whare a < b, is possible when and only whon the event a
a<x <bj o <X, <®occurs, This can be written as the following
probability statement:

Pr(a <X <bj -» <Xy <o) m gb L £0xg, %y)dm,ax,

This is the integral of tha joint p 4 £ over the limits of the probability event
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being considered,

' Consider the integral

thia {35 a function of

. £Cx, xz)&z (2.4.8)

alone, and is defined to be the marginal P df of
Xl, denoted fl(xl). Si:.ha

The concept
of variable tech

Lat the
f(xl, xz

fl(xl) and fz(xz) recpectively,
5 are gaid to ko stochastica

and X
only {f,

The changa of variable techni
definition. In 3enaral, tha ¢
random variablasg X

rly,

£(x,) = [ Elxps x,y)ex, (2.4.9)

of marginal p 4 ¢ vill be essential later when the change
nique 15 discussed.

Stochastic Independence

random variables X

1 and.xz have the Joint pdf
) and the marginal

probability density functious
The random variablesg Xl

11y independent {f, and

£(xyy x,) = £,(x)) £,0x)).

1. Probability Density Punction

Cunulative Distribution Fucction



3. Mathematical Expectation

4. Marginal Distributions

J. Stochastic Independence

These definitions will be applied in the next chapter, where we shall

discuss in detail some of the mathematical techniques used in the study of
functions of random variables,
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CRAPTER 2.5

MATHEMATICAL METIODS USED
: IN TRE STUDY oOP
FUNCTIONS OF RANDOM VARIABLES

Introduction

In this chapter several methods for t
random variables are discussed. It is not
auy one method {s Letter than another. De

reating problems in fuuctions of
poscible to say, in general, that
pending on the distributious being

studied, and the functions of these dist

ributions which are desired, it may be

that @ particular method will be superior. It must also be sald thet not all
of the functions which are desired for structural application cau ba obtained
in closed foxm. However, the following techniques will usually yield results,
even if numerical methods must be used, t'e ghiull now summarize eight methods,
and give an example of the use of each one.

" The Algebra of Rormal Functions Method

Haugeu (17) has presented a wethod, which he calls The Algebra of Normal
Functions. 1In this method, which is primarily intended for use in structural
reliability design, all variables are assumad noramally distributed. It is
also assumed chat the results for the sum, diffetencg, product, and quotient of
two nomal random variables are normally distributes”. Ynder these agsumptions,
@ completely closed algedbra can be developed; this 1s sunmarized as follows:

_ Suen ZwX4Y
vhere: X is H(ux, Gx)

42 2
Then ag - % + ay

R

(2.5.1)

" o
This s valid exactly only for the sum and difference of two normally distributed
random variables.

P




Difference 2= X-Y

vhore - X 1is N(ux, ox)
Y is N(uy, oy)
2 .
Then o, = /Ux + oy (2.5.2)
H, = hx - uy
Product Z = X.v
vhere X 1is N('ux, ux)
Y is N(u'y, o,)
2 z 22
Then 2 -\/(ay +oT 4+ o% (2.5.3)
Wy = b h (2.5.4)
Quotient Z u X/Y
vhore X is l«.’('ux, ox)
Y is !!(uy, oy) )
b <2
Ho <+ p o
Then O, —]-'15 —LQL”{*“AW (2.5.5)
uy + Gy
N
B, = Mol 1 (2.5.6)

. Smith (19, p. 40) has discussed the limics of application of equation
{(2.5.5_). The quotient of two normal ranow variables is approximately nomal
vhen uy/uy > 4, and equation (2.5.5) ts = g00d approvimation. Ag equation by

Marsaglia (33) 15 more accurate vhea M /0 < 4. Furtier discussion of the quo-
tieat of two normal variables will follow later in Chapter 2.6.

This work by Haugen Teépreseut a major step forward {a the attempt to fncor-
porate structural reliability ot the deeign level aund doas alloy the veliability
approach to be ta%en, It cannot be denied bowever that some variables which are
significaut in structural applicatioas 4re not normally distributes, Therefore

we shall discuss some adcitional techniques which cay Le applied to varicbles
which are not uormal.
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.The Change of Variable Method ,
. The discussion here will follow that of Hogg and Craly (30, Ch. 4);
= however, this technique is Guite common, and can be found in many books on
mathematical statistics. The technique proceeds as follows:
Supposc we have xl’ ey Xn gtochtastically indepeadent random varisbles ]
each with p d £ £(x). Then the Joint p a £ of Xys weey Xn is given by ’
(for independent randowm variables)
- f.'(xl, ceny xﬂ) - r(xl) f(xz) f(xn) (2.5.7)
Now if we decire to obtain the o & f of é functlon Yl o ul(xl, iy X“)
a somevhat roundabout method must be used. First, we must form u functious
which defiine e one-to-one transformation,
- ul(xl, ...,xn) :
Iy ® u2(x1’ ""xn) ' .
Yo @ 8, Gy ooy ) (2.5.8)
It is important te note here thaot we mwst have 1n transformaticn funcrions,
even though ve may only desire to kuow oae particular fuactfon, say |
yl - ul(xl} LICIRTY '}(u)' - , - | | * v :\
Now define =n inverse transformation functious of the transcformation 1
given by equation (Z2.5.8) |
X = wl(yl, ...,yu) ,
o
By @ Wy ceay) A !
» - L] . L] L] L] . * L3 ]
Xn - wn(yl’ .« s 0 y‘I) (/-1509) _ij
Theu it follows from work in analysis regarding cheuge of variablee in an
integral (34, p. 243), that the Joint p d £ g(yl, e yn)‘ is given by,
. N 'y
l BU oY) = [3l o E"l‘yv )y e w0y, ---,yn)] (2 5.10)

% {3l = absolute value of J ,




- |

— — o'

vlere:
J 18 the Jacoblan of the transformation and is defined to be
o) oy o,
% ' o,
J - 2 a§2‘ . . . -~
2 “n

T

v e

¥

ax.‘.‘.
5_/2 o

Now that the Jolut p & £ of ¥
function Yl - ul(Xl, Xn) by fiading che warginal p d ¢

81(}’1) - [Z -oo[:; g(}'ll ey yn) dyz .4 Liyn

n-1

1o Yh is knowm, we can find our desired

(2.5.115

Ve shall uow {llustrate this techuique by & simple exaumple. PFor purposes
of illustiation, we will use a simple example - ono wiwse vosulte may not be
too intevesting for structural apjplicatipas, but which serves to illustrate

the method.

Imoude (32, po 123) Yot Yy = Gy - H5), vhere Xy end
irdependont vandes varial les, eacl’:

The chi-square distribution with r degrees of frecedom is

3
o

are

leins X (2). % Find the p d £ of Yy

E(x) m et L K g cn < (2.5.12)
r (r/?\ 27 :
. w 0 . &lseviwere

(&) The joint p d £ of Xl and xz is
ot x, i
£(x)) £(x,) = exp - e (2.5.13) .
i3
¥
0<x],<(1),0<x2<m gr_»z‘
(b). Arbitrarily, let Y, = x2 since we need two one-to-one transformations.

Then the equaticns of trénsformtion are
yp= (% - x)
2% 0%

(2.5.14)

H:(r) will sywbolize tle bhi—oq.nare distribution with r defrees of frcedon,

‘ 7d ced from %%
%Z‘s)tmavuaﬂable copy.
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?
}

(c) The inverse transformatfon is

(d) The Jacobian of the inverse transformation is

- [e]- -

(e) The jolnt p d £ of Yyand ¥, 1s
1Yo
By ¥,) m e - )
(£) The marginal p d £ of Y; is
'
o Y 4!
81(y1) b Lzylge 1 dyz ~ 350 ) -0 < yx < o
o “¥y~¥ -y
J, %e 1 2dy2- Le 1 °0<y; <w
] <y < w (2.5.16)
81()"1) =1l e 1

The extension of thls technique to functions of several variables follows
the same pattern. One dilsadvantage of this techinique {9 the requirement for
geuerating as many equations of transformation as there are random variables

laovolved. It is frequently possible to get around this requirement by using
the moment generating function method, which will be discussed noxt.

The Moment Generating Function Method

In Equation (2.4.6) the moment generating function was defined as

E(e™) = [T o frxyax




-

Now it can be shown (30, p. 135) that we can compute E Exp (t ul(xl, ses xu)ﬂ
and Lave the value of E(etyl) whare Yl L “1(x1’ are Xn). Since the moment

geunerating function is unique, then i1f the moment generating function of Yl
is secn to be that of a certaln kind of distribution, then Y1 hag that distri-

bution.

Bxawnle (30, p. 138): Let Xl and xz be independent random
varisbles with normal distritutions N(ul, 9 ) and N(Auz, o, ),
xespectively. let ¥ = .‘{1 - xz,- find g(y), tha p d £ of Y.
The moment gencrating fuanction of Y {is

tl{x, - x,)
M(t) = E(e 1 2 )

| tx -tx) 7
« F} 3 11 - T (2.5.17)
The forn of the monent generating functlon for the normal distribution is
known to be (32, p. 97)
: 2

MCL) m exp fut 4 F~fum (2.5.18)

P4
Than txl ulztz
'  E(e )= exp e+ 5

-tx2 2.2

O

So that M(t) fvom equation (2.5.17) is

G 21:2 o 2t2
ML) = exp B+ > exp |-ut + —or-—
t ulz + 0?2 t
= exp (ul-'-lz)-l- B (2.5.19)

From equation (2.5.19) 1t is scen that g(y), the p d £ of Y {8
> ,
l:(ul - My 01‘ + 0, ). :

The moment generating function method {5 quite easy when it works, but it
may not always work, Lecause some functions do not possess monment generating
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functions; morecover, the result of applying the'mocwnt generating function
method may not be rccognizable. tie are now going to proceed to a discussion
of & method, the Fourier transform wmathod, wvhich will be especially suited
to problems lavolving sums of random varviables.
The Fourier Transform Method (35), (36), (38) \

This method, utilizing the Fourler transform, convolution, and inversion
ig a very poweriul oue in the study of sums of rvandom varfables, especially
since numerical techalques exist for solutlon, Ref. (35).

ve have, frow 2af, (37), the following theoream:

If X obeys a lav [ £,(x)dx = 1, and ¥ obeys a law [: £,(y)dy = 1
then the sunm Ze X+ Y will oley the Yow

IZ [: £,z - ) fz(y)dydz =1

That ig, the p ¢ £ of 2 will be

ge) = [0 £,(zy) £,09) &y ' (2.5.20)

But this is recognized to be the inverse of the Fourier convolution
(3G, Sec. 3.33) as Iollows:

The Tourler transfommu of El(x) and f:‘(y) are
. ~ilUux
Fl(u) - [: fl(x)e dx

P,(u) = L fz(y)e-iuydy (2.5.21)

Then

A ICIEAT RO

- [ £, (z-y) £,(y)dy (2.5.22)

where v"L 1g the inverse Fourler transform.
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" Mellin tracsform method s especially suited to solving prol

This oays that we can find the p & £ 5(2) of the sum of two random
variables X and Y such that Z = vV 4 ¥ by finding the Yourier transforms
of X and ¥, multiplying them together, aund inverting the rasult.

The iaverse of the Fourler transform is defined to be

1) = L 2 M prayan ' (2.5.23)

Tables exist for the transform and its inverse, see (35, p. 122),

....59&‘9.1.;3: (36, &:l 3o3"2)c Iﬂt

fl(x)—l' 0<n<]
e 0 elsovlare
£,(y) = eV y<o

It 1is desirei to find g(z), the p.d.f. of the random variable Z = X + Y
Thea we bave

~fu
W= o - &
- P.(u) m et
' 2 iv+1 -
So that
1 — e"iu

Py(u) . Fo(w) = To(le ¥1y - s = F(u)

and &(2) = 5 L)
=1-¢F z<1

m(e-1e? 15g5w

This fllustrates the utility of the Pourler tranaform method In sciving
problems involving the sum of two random variables. A similar mothod, the

vlems invelving
products and quotients of randowm varlables.

The Mellin Transform, Convolution,
aad Inversion Method (7),

(8), (35), (39)

The Hellin trans;oras and convolutions are very useful in finding the

Yote that in this case the Fourier transform can be found by looking up the
Laplace transform and replacing s by iu. A similar process provides the

laverse, Reproduced from
best available copy.
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products and quotients of independent random varisbles. This 15 a vesult of

- thelr followviug properties (7, p. 7):

1. The p d £ of n 4independent random variableg nay
be expressed as a Mellin cocvolution.

2. The Mollin convolution ylelding the odf ofa
product of u iudependent vendom variablea can
be oltained from {ts Mellin transform by means of
an fnversion forsula,

3. The treasform of the Mellin convolution yielding
the p & £ of a product of u Independent rendom
variables ig the product of the Mellin transforms
of the p 4 f's of the component random variables.

The Mellin transform can be defined as (7, p. 8)

M(L(x)) = L E"E] = L seman (2.5.24)

Jote that the Mellir transfowma is defined oaly for x & 0. However, Iastein

(3) and gpringer ang Thompson (7, p. 10) discuss systems wlhiereby the transform

can be applied over the range =~ 5 % % », This technique involves breaking
the function ianto positive aad negative parts, zad redefining the pactial
functions in such a way that the Mallin transform methoc can be applied. The
detoils will not be presented here. The presentation in this report will be

restricted to the range;x 8 0, with the understanding that the aethod can be
extended. ST

The {averse fbr.mla is glven by

£(x) né}t_if;*_‘ ;: 2% U(E()) ds (2.5.25)

Tables for the the Mellin transform and {nverss are available, (8),
(35, p. 255), (&3).

The Mellin convolution of two functioas £,(x) and £,(x), 0 S x <w is

deiined as

£ ’” ..1- - —x- ¢ - '
sxy = Jo 5] £ (y £,(y)dy (2.5.26)
But this is exactly the p d £ of the product h(x) where X = %X, of two

independent rondom variallec with p d f's fl(xl) and fz(xz); (37).

Reproduced from
best available copy.




L *‘fini"' ..,_...‘._ .
gl
: | i

e

Ong now has :
M(h(x)) = E [(xlxz)a-]]
“E‘ (xls—lj] (;I: (xzs.]ﬂ ‘
= M(fl(xl)) M fz(:ﬂ:z) (2.5.27)
Equatlon (2.5.27) says that the p ¢ £ of a product of two independent random

variables X, and X, is the Mellin couvolution whose transform is the product
of the lellin tzovnBforms fl(xl) and f,,(xz).

By successive application of the above scheme, we can find the product of
o lndependent raundom variables Xl ¢ O with p d f's fi(xi)' i=l, 2, ¢, n

by the use of

n

M(h_(x)) -iTI M(2, (x,)) o (2.5.28)

The p d'f of the desired result, h‘(:c), can be obtained by inverting
M(hn(x)) Ly use of tables, or by applying the definttion of the invarse

IV

| 1 oHo -5
b (=) @5y [T x ﬂlbchi(xi)as | (2.5.29)

~ This Integrsl can, in most caces, be evaluated by use of the theory of
residues, soe, Lov owample, (49, Ch. 12).

The Mellin transform wethod can aloo be used to £find the distributions of
quotients of iundependeat raa.dom variables in the following way. Consider the
: ' a(s~1)

Mellin trausfomm of the function g(x) a ¥ y then
7 [ ge] . 2 D giyax (2.5.30)
w E(x) | as—m-):] *
If am -1, then , : _
E [:(x'l)s’l:‘ = M(E(2) | -8+ 2) (2.5.31)

%*
The gymbol M [f (x) |s -a + 1:] will moan that the expression is M(£(x%)) with
8 replaced by a3 - x4 1. In general, M E(x)l 5:[ will mean M(£(x)) with
6 replaced by ¢ .

| Reproduced from
| Sest_available copy.
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That 13, the Mellin transform of the p d £ of the reciprocal of a random
veriable, 1/X, is the lellin transform of the X, with the parcmeter s
veplaced by -8 4 2, :

Then one can determine the p d f q(z) of the quotient o0f two random
variables xl and X2 vith p ¢ f's fl(::l) and t”,z(xz) by

MaC)= 1y G - [ £, 0,)

s+ 2] (2.5.32)

Then q(z) will follow from the iaversioa

cHim
LORE = ESLCICAINE CRFEORY P I

c-ic

Fxample: Let the random voriable X have the mononomial pdf

£ = (a4 1) & 0ZxB1, oreal

« 0 “élseihere -
- n
The Mellin transform of the product Y m ) X, 18, using elementary
integration and Equations (2.5.24) and (2.5.28), 1=1 "4

, 0
Hb(y)) = |G EL)

s+ Q

The inverce is

n [otie ;
h(y) = '(9'2%5:})"'[ y s )™ ds

c-fco
which, by application of the rx"esidue theorur:, bLecomes
' o oty o~ 1, n-l
hiy) = (n - 1)? y (la y) dsysl
. e« 0 elsewhero

The power and utility of the Mellin transform method for fiudlag the distri-

butions of products ani quotieats of random variables can now te seen. Some
results of the application of this mell.od will be discussed ir Chapter 2.6. We
vill now «dfscuss a wethod which i3 related to tho moment geuneratiag fuuction

method, namely, the choracteristic functioa metiod, | :
' 2

Reproduced from §§
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The Characteristic Tunction
Method (41, p. 240; p. 247)

In Chapter 2.4 it wag mentioned that a moment generating function did not
alvays oxist for a given distrilution. A closely allied function which will
always exist i3 the characteristic fuactlon, whicli 1o defined as

9 (v) 5[ olte £(z) dz (2.5.34)

o]

As in the case of the mowment gencrating function, a distribution is completely
determine! by its characterlstic Zunetlon.

Also, 1f the characteristic fuaction is tnotm, the distribution function
can te found from the relation

£(x) w -2{;» j'°° o (t) e gy " (2.5.35)

I

This method will ot be developed Lo & great extent at this time; a slmple
example to illustrate its spplication will be presented,

Exarinle (41, ». 275)1 1f we have n independent random variables
Xl, ceus Xn whose characteristic functions are @l(t), veey Ql(t),

tie product

o (t) @ Py (1) Pa{t) un ¢, (%)

io the characteristic function of the sum

S = Xl + Xz I Xu

This can be secn by conoidertng

- EEirlt‘ ol%z

but since the random variables are independent, the expectation
of the product is oqual to the product of the expectations,

I3
[ ]
s
R
Gl
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therefore
@ (£) = @ (t) 9,(c) +o. @ (1)

Consider now n independent normally distributed vandom variables
wvith meansg = 0 and stendard deviation Fys Oys oo % Their

characteristic functlons are (41, p. 244)
' T 22
o, t

. - k = 1, 2' see 1Y
9. (t) =e
and the characteristic funetion of thelr sus

S=X +X +...+Xn

1 2 -
will be ,
9
- ..v.z.s;...
P(t)= e 2
S 2 2 2 2
where o -cl +°2 + e Gn

Therefore, S is uormally distributed with wean 0 aud standard
deviation

-
Cw 01‘+022+ ...o&anz

Tha Cummlative Distribution Function Hethod

This method is quite simple to apply, aal 1s actually the oue-dimeasional
case of tie change of variable technlque. lovever, {t 1s preoented separately
because it provides a handy tool for Zirding functions of rendom variableg such
as the one presented in the f{ollowing exawple (39, p. 95).

Example: Let X have a ganm2 digtrlibution with ﬂ'_- r/2 - 1 where r
is a positive futeger end f > 0. U Y w ?.X/QI, vhat {8 the p 4 f

of X? '

The cummlative distrilation fuuction of Y {18

G(y) = P(¥ S y) = Pr (R & 2)

For y >0, -




If (r/2 - 1) is substituted for B in Equation (2.3.13), then

w2
S S
r\ _r/2
o r ’))’2

The p S £ of Y 18

Gly) = K(FI21) ol

a(y) 01_(13'__(3")_1]

"~

- Y
[ ()
- 1 §r/2~1)€-y/2
MoK
or, Y is Xz(r) -

" The Monte Carlo MNethod

r/2 n °

(311

The Monte Carlo method enables the determination of the distribution of

the dependent varfable, given the dlstributfon of the variables It 18 a fuaction
of, by means of computer sinmlation. Ma.y of the fimetions of random variables
for stress an: strength, as well as other {mportant parameters, caa be syuthe-
sized and evaluvated via Monte Carlo sismulation. The Monte Carlo technique is a
popular and succegsful one, The tolloving description covers the cetermination
of the distribution of the dependent variable from the distribution of geveral
independent variables:

1. Divide the distribution of each independent variable or faector into
an optimm number cf Iintervals.

2. Calculate the cantroid cij for all the intervals fu each distributlon.

3. Deternine the probalillty of occurrence of the coutrold of each interval,
Pij’ which 1y the percentage of the total area undey the ith distribution

contaliied 4n the jth interval.

4. Enter all the paire of numbers, cij and Pij’ into a digital computer,

along vith a random number generating program for associating a partic-
ular cigic or diglts, in the rendom number, with a particular varigble
and a particular pair of Cij and PiJ values of that variable.

5. Generate a random rumber an< therefrom identify a complete set of Cij
values for all variables ideatified with it, together with their »
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6.

7.

8.

9.

10,

11.

12.

assoclated probabilities, Pyg o Contime until over 250 and
preferably up to 2000 such sets are obtained.

Calcalate the response (strength, stress, or reliability) from
esch set of the randomly selected variables.

For each response value determine the product of the interval
probabilities, x, , agsociated with the Cij used in calculating
the responsec,

Determine a suitable number of intervals, k , for the calculated
regponse values. Group the values of the response lying in each
interval and their probabilities.

Calculate the centroidal response, r.kx , for each interval., These
are the abscigsas of the response histogram. -

Determine the probability ol occurrence associated with each r.y ,
or Poi , by summing up the probabilities associated with the
regponse per internal width. Thesge are the ordinates of the
response relative frequency histogram. They are converted to fra-
quencies by multiplying by a number of trials. If not multiplied,
then we have a relative frequency histogram,

Plot the centroidal response values, r., , and the associated
probabilities, Pcx . This will yleld a response relative frequency
histogram which is properly weighted relative to the probability
density functions of tha initial variables involved.

A distribution curve msy now be fitted by statistical regression
analysis which is the distribution of the dependent variable,

The Monte Carlo technique may be applied to any combination of distri-

butions.

The accuracy increases as the nuumber of intervals chosen for the
Yy

probability density function of the variables 15 increased, and as the
number of the calculated response values is increased.

Sumnary

In this chapter eight methods for attacking problems {n the study of
functions of random variables have been presentad. These are:

1.
2,

3.

The Algabra of Normal Functions Method
The Change of Variable Method

The Moment Generating Function Method
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4. The Fourler Trausiorn, Coavolution, and Yaversioa Method
3. The Mellir Transforu, Convelution, and Iuversion Method
6. The Characteristic Function Method

7. The Cumulative Distrilution Function Method

8. The Monta Carlo Mathod

It caunot be stated categorically that one method is to be favored over
all others. The Algebra of Normal Faactioas wetliod has the advantages of being
easy and straightforvard, and the disadvactages of treating only normal fuuc-
tions and of belug inexsct except for the sum and difference. The change of
variable method, moment cenerating function metiiod, characteristic functlon
method, and cumilative distribution functlon metlod may yleld good vesults in
some cases but may become involved and cumberzome ia other cases.

The two metlods, Mallin and Pourier transform are restricied respectively
to the product and quotlent for the Mellin transform method and to the sum for
the Fourier transfown method. These methods are very powerful for these partic-

ular casac, especially when it is noted tiay can be handled by numerical tech-
niques wvhen they fail to yield closed golutions

The Monte Carlo wethod will aluvaye give an answer, even for complex func-
tiong of voa-identically distributed randcon variables. This, in viev of tha
preseat state of the ert of the other methods discuseed, oakes it a very pover-

ful and valuable tool. It does, however, roquire the use of a digital computer
and can thus Le a costly method.

Some applications of thege metiods, aad vone interesting results vhich are

thought to Le of tmportance ia the study of functlons of ranlom varisbles for
structural applications ave meutioned iu the next chapter.

—
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|
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where a and b are non-negative constants and X, Y are independent standard

g, A4

CHAPTER 2.6

SOME SIGNIPICANT RESULTS FOR
STRUCTURAL APPLICATIONS

Introduction

Some interesting results have come to lipht which promise to be of impor-
tance to structural reliability theory. These will be discussed below. These
results, which had not come to the autliors’ attention before the start of the
present study, repyesent a first step into areas which have not been heretofore
utilized in colving structural reliability problems.

- Ve will begln by discussing some rasults for the normal function, then
functions of other distributions will be taken up.

Ratio of Normal Variables

Haugen's Algebra of Normal Functions (17) assumes that the ratio of two
normal variables is normal. The validity of this assumption was discussed
briefly ir Chapter 2.5. It io known that the xatio of two normal variables is,
in fact, not normal.

For the ratio of two stancard normal variebles, 1(0, 1), Epsteln (8, p. 377)
shows, by the Mellin transform technique, that

h(y) = -1; (2.6.1)

1 +'y‘

This i3 the Cauchy distribution.

Marsaglla (lb, p. 3) discusses the geueral problem of the properties of the
distribution

a4+ X , . !
w- b+Y (106.1.)

rE—— - 7 - e ovmeauL . ewe va

normal variables, H(O, 1). It can be seen that if W' = Xl/Yl is the ratio of

- Reproduced from %
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two arbitrary normal random variables, then there are coustants ¢y and <,

such that € + ¢, t'has the same distribution as V. Thus the study of aquation
(2.6.2) suffices for the general ratic XI/YI'

Starting with the bivariate cormal distribution and using the cumulative
distribution method, described in Chapter 2.4 of this section, Marsaglia develops
an expression for f(t), the pdf of ¥, or

2.2

-0.5(a“+b")
& - _...Wc pradiand 1 -SP—H—— q i 2.603
£e) x(l + t.)') I + ?(q) fo Plyddy ( )

..m.‘.i.. and

) 3
;5

@ is the standard nomal p d £

where q =

This equation must be evaluated numerically, and some results of computer
ruas are shown in Figure 2.3. This Figure i3 zdapted from (10, p. 5). Note
~ that the quotient of two normal variables is actually bimodal in some cases.
Figure 2.4 (10, P. 6) shows that the division between the unimodal aand bimodal
distribution result depends on where the point (a, b) lies.

Product of n 5 10 Independent Random
Normal Varlables in Series Form

Springer and Thompson (7, p. 36) derive a result for the product of n
 norxmal random variables, for n % 10. The Mellin trausform method is used for
"solving this problem, and the inversion is accomplished by use of a digital
_computer. The inversion integral is i

Stiw, s-1 1 n
Z  _ o-1 e
- x ° 2 g T/ d 2.6.4
Rz, o) = 33 * - r (z) s (2.6.4)
c-iw J“ _J

A great deal of mathematical effort yields the result

2 S[ n:_' ° 2 \n-i-k (2:6-3)
2 2 - *
x /(207) lu x
h(x’ 0) = -1-k) |k o2y n/2 (2&2)n !f”j) r (S)_J}

where In = log,
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1I/34+X 2/3+x 3/3+Xx 4/3+X 5/3+x 6/3+4X
8/8+Y 8/8+Y 8/8+Y 8/8+Y 8/8+Y 8/8+Y B/8+Y
0/3+X 1I/3+X 2/3+X 3/3+X% 4/3+ X 5/3+X 6/3+X
7/8+4Y /8 +Y T/84Y 7/8+Y T/8+Y r/8+Y T/8+X
0/3+X 1 /34X 2/3+4X 3/3+X 4/3 4+ x 5/3+X 6/3+4X
6/8+Y 6/8+Y 6/8+Y 6/8+Y 6/84Y 6/8+Y 6/8+Y
0/3+X 1/3+X% 2/3+X% 3/3+X% 4/34X 5/34+X 6/3+X%
5/84Y 5/84Y 5/84Y 5/8+Y 5/8+Y 5/84+Y 5/8 +Y
0/3+X 1/34x 2/3+4X 3/3+X 4/3+X 5/3+X 6/3+X
4/8+Y a/8+Y 4/84Y 4/8+Y 4/8+Y 4/8+Y 4/8+Y
o/3+x|  1/3+4x 2/3+x 3/3+X 4/34x 5/3+X 6/3+X
3/84Y 3/84Y 3/8+Y 3/8+Y 3/84Y 3/84Y
,jk ‘ h_

O/3+X 1/3+x 2/3+4X 3/3+X 4/34% 5/3+X 6/3+X
2/ajL 2/31 2/% 2/8+Y 2/84Y 2/8+Y 2/8+Y
O/3+X 1/3+X 2/3+X 3/3+X 4/3+X 5/3+X 6/3+X
|/8+Y-q 1/8+Y 1/8+Y 1/8+Y 1/8+Y 1/8+Y 1/8+Y
0/3+X 1/3+X 2/34X 3/3+X 4/3+X 5/3+X%X 6/3+X
0/8+Y omyk 0/8+Y o/8+Y o/8+ Y 0/8+Y 0/8+Y

FIGURE 2.3 GRAPHS OF THE DENSITY OF (a +x)/(b+Y), WHERE a)0,

b>0 AND X,y ARE INDEPENDENT, STANDARD NORMAL
VARIABLES, VALUES a=0/3, 1/3,....,6/3 AND b =0/8,
1/8,...., 8/8 WERE CHOSEN SO AS TO REPRESENT

THE POSSIBLE SHAPES OF THE DENSITY FUNCTION.




6..4_
5 4
41 IF (a,b) IS IN
THIS REGION, THE
b DENSITY OF -H&
IS UNIMODAL, IF (a,b) IS IN THIS REGION ,
31 THE DENSITY oOF -g—+i’Y£ IS BIMODAL.
. 2 .
Ve
I $
T t i t—
0 3 49 5 6
a
FIGURE 2.4

THE DENSITY OF (a+X)/(b+vY) IS UNIMODAL
OR BIMODAL ACCORDING TO THE REGION OF

THE POSITIVE QUADRANT IN WHICH THE
POINT (a,b) FALLS.
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A similar formula (7, p. 47) is given that allows each of the functions !
to have a different standard daviation 0y - '

Theorems for Puuctions : o
of the Lognormal Distribution '

The lognormal distribution is an interesting oue for use in functions of
random variablas because it is one of the simplest skewed distributions. The
lognormal distribution enjoys the same reproductive propecties with respect
to multiplication and division that the normal distribution eanjoys with respect
to acdition and subtraction. That is to say, the product or quotient of two
lognormal distributions 1s lognormal.

Presented hero are theorcns l'egﬂr"i'xg the distributions of functions of the 7
lognormal distribution. |

1. If X 4is L(u, o) then /X 18 L(-u, ¢ ); (3, p. 10).

2. If X {5 Ly, 0) and b and ¢ ore constants where ¢ >0,
(say c = ea) then cxb is L{a 4+ by, ba); (3, p. 11).

3. If Xl and X2 ave independent L wvariables then the product
XIXZ {8 also au L wvariable;

ey . TN
£ xA1 ;}_‘a] Liw,, o ) -
and X, 1s L(p, o

2) ‘ :
\, 72 B
then xlxz is l‘(“l + s 01' + o, ); (3, p. 11). |

jia

L(uj,' o, ), {b] a sequence of constants and c = o° a positive ’
2 2 o

4, If {x is a2 sequence of independent L varlates where X

constant, then provided I b.u, and T b “o.” both couwverge, the o
PR j 17

b \o o g

product c‘n’x 3 is L{(a + b, u,, 0 ); (3, p. 11). ﬂ

S. If X, 1s L(”l’ 9 ») and X, ise L(“:!’ 2 ), the ratio X/X ie

Wy - iy Noy? + 0,55 (3, p 1), ;



6. If Xj(j =1, ... n) are independent L variates with the same
' n
parameters u and o their geometric mean (U x )Un is

2 jo1
L(u ,No"/n); (3, p.- 12).

el

7. 1f xl and X2 are two positive independent variates such that

xlxz ie L variate then both xl and x2 are L, variates.

Product and Quotient of Two
Independent Random Gama: Variables

Springer and Thompson (7, p. 49) utilize the Mellin transform to obtain
the following results. ’

The gamma random variable ig characterized by the pdf ('7- 1)

x‘ﬁe'x
(%) = r(P ‘*—1*)- 08 xso (2.6.6)
4 )

w 0 elsevhers

The Mellin transform is

M(E(x)) = [y

' (2.6.7)
. i(A+1) -
Thus the Mcllin transform of the product ¥ = xlxz, where Xl and X2 arsg
identically distributed, r
(e +AY\ 2
M(g(y)) = (s +A ; (2.6.8)
(A+1),
Inverting (2.6.8) - e
- ' — “”‘.“

(r.(A+1)

where K (y) denotes Bessel's fuacgion of the second kind. =

——

-4 ySoe

" Proceeding in ¢ similar fashion, the pd f h(y) for Y = X,/X, 18 showa
to be (7, p. 59), if_JLl and X2 are identically distributed.
2+ 2 -2(8 + 1
By) m —2 MEF L B () 4y 2B+ 1) (2.6.10)
o { B +1)
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Figure 2.5 shows a plot of this function.
Theorems for tlie DBeta Vistribution ' !

Some useful properties of the beta distribution have been shown by Jawbu-
nathan (9). 7The beta distribution seems to have potential applicatiou in
structural reliability theory (Chapter 2.2), so that results for it arc of ¥
interest: i

1. If X is Bl(a, b), and Y {is Bl(a 4+ b, ¢) then LY 1is Bl(a, b + c);
(9, p. 402).

2, 1If Xl’ XZ’ . Xp are p 1independent B1 random variables with
paraneters (ai, bi) for 1 =1, 2, ... , p, and {f a =a +b

i 41 i i
for i =1, 2, ... , (p-1} then the product X1X2 ...‘Xp is Bl(al,

b= g& b.); (9, p. 402).
=1 1

3. IfU=(+Y)/(1+X), aad if U {s By (b-d, d) while Y is
B, (a,b) then X is B,(a +d, b-d), provided that U and Y are o
independent (9, p. 403). T

A brief mention will be made of some other works which were not iuncluded g;i
in the main part of this report because they were not thought to be quite as ;;f
significant as the ones detailed above. i

LeCam (42) discusses the distribution of sums of independent random i
variables. In addition to their results mentioned above, Springer and :
Thompson (7) have given results for products, quotients, and geometric means
of independent random normal variables, in closed form; products, quotients,
and geometric means of independent random Cauchy variables, in series form
for general n , and in closed form for n = 10; products of n = 2,3,6 indepen- !
dent random normal variables in tabular form; quotients of gamma, rectangular,

and Cauchy independent random variables; and "mixed" products of n = 2, namely,

a rectangular - Cauchy, a rectangular - gamma, and a rectangular - normal pro- :
duct. o

Marsaglia (10) in addition to hils work presented above, gives a solution
for ratios of sums of uniform random variables, that is,
Ut eas + U
1 n

V1+ see + Vm

Y

Donahue (43) discusses general examples of applied problems involving
products and quotients of random variables, discusses gencral theorectical L

112
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FIGURE 2.5

THE DISTRIBUTION OF THE QUOTIENT OF TwO
INDEPENDENT RANDOM GAMMA VARIABLES
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models for determining the distribution of products and quotients, gives
results pertaining to products and quotients of random variables which
generally occur as weasurement error, gives limiting distributions and
asywmptotic results, and has a very extensive aanotated bibliocgraphy.

DeZur and Donahue (44) discuss integral equation soluiions for product
and quotient of independent ranlom variables, and also discuss the product
of two (not necessarily independent) normal variables. They ceport limited
success in their effort. ‘

Shah (5, p. 2) discusses an application of the lattice distribution
(a discrete distribution) in describing the fatigue life of a part.

All of these works contain interesting material which should be explored
further,

Other distributions are also wmentionad in the literature. The work of
Gumbel (21) on the extremal distributions has some mention of fatigue life
problems. The double exponential distribution is mentioned by Hayes (o0,

P. 121) as best describing wind loads on a structure. Freudenthal, Garrelts,
and Shinczuka (16, p. 100) and Shinozuka and Nishimura (45) discuss generel,
or geries, representation for distributions. This approach shows promise for
numerical techniques.

Summary
Here we have presented some of the more interesting and promising func-
tions of random variables which were uncoverad in the literature search. HNot
all of them are presented; references to other results may be found by con-
sulting Tables 2.1 and 2.2.

Several mathematical methods have been discussed in this section, and all
of them probably have some future in the study of functions of random variables
for structural application. The Fourier and Mellin traasform metlods stand
out as particularly valuable tools for dealing with sums, differences, products,
and quotients, because they can be evaluated by numerical methods when they do
not yield closed form solutions.

The Monte Carlo method also stands out as being an important method which
will always provide an answer.

Results which apply to structural reliability have been found, and the back-
ground nas been laid for further work in this area. 1In particular, the results
for the quotient of two normal variables (10), the product of n = 19 normal vari-
ables, (7, p. 36), several useful theorems for the lognormal distribution (3),
and some work on the product and quotient of gawma variavles, (7, p. 43), have
been found as well as some theorems for the beta distribution. The above
techniques and results give ruch hope that the problems involved in structural
reliability can be solved for distributions that are not normal as well as

for those that are normal. o
Reproduced from %
best available copy.
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DISTRIBUTION

Nomal

Lognoriaal

Gamma

Bata

Mixed

DISTRIBUTION, FUNCTION OF DISTRIBUTION,
AND SOURCE REFERENCE

a.
b.

TABLE

2.1

PUNCTION

Ratio of two independent

Normal

Product of n & 10 indepencent

Normal
Sum and 44

Lference

Geometric mean

Geusral product and quotient

1/X

cx’

x . Xz
g‘x
/x‘cx.
«w!j)

4

1/n

%) - %

xl/xz

XY

-

x]‘% «s s xp

6. Product and
quotieuts of
miscellaveous

L

7. General densfty
functions

REFERENCE (S)
(3), (10)

(7)

- (17), (30)
(7)
7, )y,
(43), (44)
(3

(3)
(3)

(3)
)
(3)

(7)
(7)

()
()

€))
(1), (43,
(44)
(16), (45)
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TABLE 2.2

UATHIMATICAL METHODS USED IN THR
STUDY OF FUNCTIONS OF RANDOYM VARIABLES
AND SOURCE REFERENCES

Algebra of Hormal Punctions , . . . . ., . .(12), (18), (29)

Change of Variables . . ., ., . . . . . . . . . (11), (12), (13), (25),
: (30), (37), (43)

mﬂtcﬂneratiﬂg mlmtiox’u « » » & & w ® * (3)) (11)) (12)’ (13)’

(30)
FOurier Transform » s+ & 3 ® 4 s a2 @ 8 ¢ ¥ 0+ (7)} (35)} (36)) (38)’
| | o G9) |
Mellin Transform . . . . . . . .. oo (7Y, (8), (35), (39),
(40), (43)
Characteristic Function , ., ., . . eoe e e (3), (6Y), (43)
Cumulative Distribution Function, ., . . . . . (10), (43)

MonteCarlo.................(50),(51),(52)
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C}U\PTER 2.7

CONCLUSIONS AND RECOMMENDATIONS
Coaclusions

A8 3 result of this study, the following concluslons are dravn:

1. Mathomatical methods for handling functions of random variablesg .
fox structural reliabilicy epplicationa do exist.

Z. Some results which will bs useful for structural reliability
applications have been found, aud application of the mathematical
tectiniquos wideh have Leen dJdiscusged alove should yield otlicry.

3. The Pourier transform, convolution, and {nversion method i3 very
promiging for sums of indepeandent random variables.

4. The Mellin tranaform, convolution, and inversion method is very
promlsing for products en quotients of independent random variables.

5. Tha change of variable method will be linited but may be useful for

some functions, provideg that the functions aud transformations are
wot too complicated, .

6. The moment generating fuuction method and the charocteristic function
metiod may be useful in certain cages.

7. Tho cumulative distribution function method may yield some results
for simpler functions, such ns Y w X, ete.

8. The Alzebra of Normal Functions Method Ly provide tho best method
for engincers to estimate structural reliability without resorting
to time~consuming and costly computer atudics, The approximetions
involved in the Algebra of Nommal Functione may be close encugh to
the true distributions favolved 11 most gtructural veliability pro-
blems to form the basis for a good structural reliability estimate.
The conjecture must be iavestigated further.

9. The Moute Carlo Method provides a very flexible and powerful tool
for work 1in this area.
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Recomuendations

The following recommendations for future efforts are made:

' 1. BRxplore the Fourier transform and Mellin trensform methiods to
develon fully their usefulness for functiors of random variables
for structural reliability applications.

2, Rurther effort should Le made to develop results for functions of
distributions such ae:

1. YVeibull
2, Goemma
3. Beta
Pew results were found for tlese dlstributions, and they are of
potential importance iu the zrea of structural reliability.
3. Other functions of random varinbles such ag Y= In¥, Y = ex, :
Y = sin¥%, etc., should be iavestigated. These will eventually be

necessary for structural preliability work, although the sum, pro-
duct, quotient, and difference form a useful beginning.

4., Other dstributions should be fuvestignted fuvther, namely:
1. Series Representation
2. Extremal
3. Double Pxpounential
4. Lattice*
The applicability of these distribﬁtions to structural reliability
shiould be studied, and, Lf they are thought to be applicable, func-

tions of them should be developed.

S. Fﬁrcher effort should be expended in au attempt to juatify the use
of varioug distributions ou & physical, or phenomenological lLasis,

il LT ol bl LN
) oo v | 1 ARSI 1 SK RPN N R

k.
O e

*
A discrete distribution (5).
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6.

8.

'” rather than on the basis of best fit to data.

3

The questlon of whit 18 an independent and vhat 13 a depeudent
rvandom variable iun structural reliability cheory slwould be
exanined closely, and care should be taken to apply results for
functions of random variables properly, based on whether the varia-
bles are independent or dependent.

Fuuctions of random variables for mixed (not identically distributed)
distributions, such ags the product of lognormal and normal distri-
butions, should be studied. IResults which h.ve been found for

such studies do not scem to be too important to structural relia-
bility (7).

The accuracy of the approximations used in The Algebra of Normal
Fuuctions, and its value as a rapld and practical mcthod to estimate
structuvral relisbility sliould be assessed and eyaluated. (Sece

Ref. 22).

The Monte Carxlo method should be developed extensively for solving
problems in the functions of random varisbles.

s
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SECTION 3

DETERMINATION OF FAILURE GOVERNING
STRENOTH DISTRIBUTIONS

Preaading‘lﬁge— “hlani
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CHAPTER 3.1
INTRODUCTION

In the engineoring application of the design by reliability
methodology, one of the most difficult tasks may be the determina-
tion of the actual strength and stress distributions involved.

In this Section we wish to consider two methods for determining
realistic values for strength distributions. The first method
involves the use of functions random variables, as discussed in
Section 2. Examples of this method will be the Algebra of Nomal
Functions and the Monte Carlo technique. The second method will
be that of direct experimentation. The appropriate failure
governing strength distributions can be generated directly by
experimental means. Such an experimental program is now being
conducted at The University of Arizona. Finally, a discusaion
of the use of modifying factors to relate laboratory tests to
actual parts in service will be given.

This entirs area of determining the actual stress and
strength distributions, where such distributions are considered
to be the result of applying the methods of functions of random
variables of the engineering parameters involved, is an area in
which much work remains to be done. Furthermore, there is,
indeed, a great need to sell this methodology to practicing
engineers, government, and management, so that it will become a
standard procedure to think of design as a problem in functions
of distributions rather than one of single values.

' Preceding page blank
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bution can be taken as time invariant. If the design life of the above

CHAPTER 3.2

STRENGTH DISTRIBUTION DETERMINATION BY
FUNCTIONS OF RANDOM VARTABLES METHOD

Frequently in engineering practice, it becomes necessary to
estimate the fatigue strength of a part going into service. This
is currently being done in a conventional manner by methods similar
to those discussed in Section 1. Let us now consider the design by
reliability approach to this problem using the Algebra of Nomal
Functions method with the following examples

Example 3.1.-A round rotating member shown in Figure 3.1 is

loaded in such a way as to be subjected to a reversed bending moment,
+ The fatigue strength of the part is given by

% * K5

wherey

o Se = endurance limit of the part in service

8; = bagic endurance limitfbf the material

~
a9

surface finish factor

kb = aize factorA

For a deaignrlife of greater than 106 cycles, the strength distri-

member is 107 cycles, we can calculate the fatigue strength of the members
(£(s) in Figure 3.2), using the Algebra of Normal Functions method as
followss Assuming the indspendent variables in the above equation are
nomally distributed, their distribution parameters are taken to be

’55 = 80,000 psi, T3y = 6,400 psi
Lo
'Ea = 0,70, 0. =0.05

k
a

k, = 0.85, G = 0.09
b

The method of Algebra of Normal Functions has been described in

Section 2. Using Equations (2.5.3) and (2.5.4) for the product, we
have '
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kk = (1?&) (k) = (0.70) (0.85)
i';?; = 0,595

o .V;z.fhpr 2 ¢ 2 2
kakb akb bka kaq‘b

. 2 2, 2 2, 2 (0.09)2
G_\ka‘% V(o.7o) (0.09) (0.85)¢ (0.05) ,(0'05) (0.09)

and

d, . <40.00580025 ¥ |[0.0058
T J

or d‘ 6
- 0007 l
kgky
Further 7
k k.55 = (k k) (S1) = (0.595) (80,000)
RS - 4,600 pos ,
and . |

NS —— S

. N2 2 = 2
wka‘%S;'V‘kakb) (%) + (51)° (% ) ~~<r»5‘.g)2 (a;akbf

O o[ 80 4 - b T e §

-Wo.595)2 (6,100)% + (80,000)2 (0.0761)% + (6,400)2 (0.0761)°

- (51687 x 2097

g * 7,190 psi
kgg,sy ~ TP

Therefore, according to the Algebra of Normal Functions, Se is

nomally distributed with
S = 17,600 psi

JS = 7‘190 pﬂi
e :




(

Example 3.2.-Let us repeat Example 3.1, but determine the distri-
bution of the fatigue strength by the Monte Carlo method. Using the
program listed in Appendix A of this Report, the following parameters
result for the distribution of Se:

‘Results of the Monte Carlo Approach
(1000 trials)

Mean, psi Standard Devlation, psi Skevmess Kurtosis
17,61l 6,843 0.256 3.365

These results compare favorably with those obtained by the Algebra
of Normal Functions method. We note that the strength distribution
resulting from the Monte Carlo approach is not quite nomal, since the
exact normal distribution has a skewness of gero and a kurtosis of 3.0.
However, the error in approximating the result by a normal distribution
is not too serious in this case.

The Algebra of Nomal Functions method, within the restrictions
listed in Section 2, provides an acceptable mothod for estimating
strength distributions and resulting reliabilities. A more accurate
estimate of the parameters of the strength distribution can be obtained
by using the Monte Carlo method, but this method demands computer tims
and the resulting expenss.
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CHAPTER 3.3

FINDING THE FATIGUE STRENGTH DISTRIBUTION
BY DIRECT EXPERIMENT

In some cases, it may be very difficult to come up with good
estimates for the means and standard deviations of the fatigue
strength and the modifying factors, due to lack of test information
and/or engineering experience with the particular application
involved. In such a case, it is necessary to conduct a test program
on laboratory specimens. The steps required to conduct the tests
and analyse the resulting data so that they result in the desired
strength distribution will now be explained. Such a test is now
being conducted at The University of Arizona. It is believed that
such tests and data analysis have not been conducted elsewhere.
Therefore, the method will be explained in detail.

Suppose that it is desired to find the strength distribution
for a part, such as that shown in Figure 3.3. Details of the
loading, material, and desired 1life are given in this figure.

Due to lack of experience with this material in this particular
condition, and with this type of loading, it is desired to conduct
a test program in order to determine its true strength distribution.

It becomes apparent at the outset that testing machines capable
of testing large quantities of 2 in diameter bars are rare, if not
non-existent. So the first requirement of the testing program would
be to design a test specimen which is smaller than the actual part, but
which reproduces as many of the essential features of the actual
part as possibles This can be done by scaling the epecimen down,
but retaining the same stresses, stress concentration factors, stress
ratios, and material conditions. '

With a fairly large number of such specimens on hand, the
testing program would proceed as follows:

First, about 120 specimens are run at various stress levels and
an S5-N diasgram is prepared by gensrating the life (times-to-failure)
distributions at these various alternating stress levels. Notice that

for this part
' 8, ® 25,000 psi
and
8, = 12,500 psi
8o that _ '
-8 _ 25,000 _ ,
8, 12,500
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This same stress ratio must be preserved in testing the specimens.
Tho resulting S-N diagram is shown in Figure 3.k.

Once the 1life distributions have been found for a particular
stress ratio, they can be converted to the strength distribution at
any dosired life by a method which is depicted in Figure 3.5. The
cumulative histogram is formed as a cunulative per cent of specimens
failing at each stress level. From this cunulative histogram, the
strength distribution can be found by conventional statistical methods.

It must be emphasized that this is the fatigue strength for one
particular life and one particular stress ratio only. This is

aenphasized by the plot of the Goodman strength diagram for 105 cycles,
shown in Figure 3.6. The fatigue strength distribution for 8 /'

and 105 life cycles is shown in this figure. Also shown are distri-
butions which must be found in order to complets the Goodman fatigue
strength diagram. These distributions can be generated by repeating
the processes described in Figures 3. h and 3.5 for different stress

ratios, such as

8_| o

. :

| r-;,‘- 0, 1/4, 1/2, 1, 2, 4, 00

It should also be noted that Goodman strength diagrams can be found

for life cycles other than 105 by repeating the process described in :
Figure 3.5 at different life cycles, but for all stress ratiosexcept for stress

‘ratio O, which corresponds to the static ultimate tensile strength of the specimens.

The University of Arizona's fatigue testing machines, which are
described in detail in Section 6 of this Report, are now being used
to construct such Goodnan fatigue strength surfaces for SAE L340
steel, treated as described in Figure 1.3,

It is8 of interest here to estimate the number of specimens
required to establish this fundamental property of a material. The
minimum number of specimens recommended for each stress level of an
S-N diagram is twenty specimens (1, p. 39). Let us say that 18
specimens is an absolute minimum. Referring to Figure 3.5 and Table 7.3, L to -
6 stress levels need to exist in order to determine the strength
distribution at a particular life cycle. Examining Figure 3.6,
it seems that to establish an acceptable Goodman fatigue‘strength
diagram, at least 6 distributions at a specified 1life cycle but for ‘
different stiress ratios would be required, plus the ultimate tensile

istrength distribution, therefore, the estimated number of test apecimens would

be the following :

p -
I T T LN
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(f x18+30) 2+ (hx18+30) 343 x 18 + 30) 1+ 18 = 618 test specimens,

stress ratios for static ultimate

: 2,1, and & tensile strength
stress ratiog distribution
ofooand | stress ratio

of %

—— endurance strength
run specimens

— 8pecimens per stress level

— gtress levelg required

ed to run a more extensive program in
order to determine the distributions more exactly, up to twice ag

mary specimens would be required, In either case, a relatively large
number of specimens ig the price that must be paid to establish these
distributions with good confidence, Nevertheless, the establishment

of these distributiong is essential to the design by reliability
methodology.

The particular problem that we set out to discuss was the deter-
mination of the fatigue strength for large diameter shafts, we are
now faced with the problem of modifying the results from the test

Specimens so that they apply to large diameter shafts, This will be
discussed next. ‘
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CHAPTER 3.4

RELATING RESULTS FROM LABGRATORY TESTS
T0 PARTS IN SERVICE

In the conventional design methodology, the laboratory tested

" endurance limit is corrected for service conditions by s number of

modifying factors (2, p. 166) as followss

Sq " kakbkckd--—l%Sé (3.4.1)

This equation can serve as a basis for the design by reliability
methodology if it is realized that Se s S; and all of the factors

L kb""kn’ must be treated as distributions rathsr than discrete

values. The main problem then becomes that of determining the true
distributions of the various factors.

One of the most important considerations for a testing program
is to incorporate as many factors as possible into the program itself.
Thus, in the exemple given in Chapter 3.3, the test progran was set
up 80 that the factors for surface finish, temperature, notch sensi-
tivity, and heat treatment were eliminated by making their effect on
both the test specimen and the part the same. In this example, the
only factor necessary to relate the test specimen endurance limit
to the part endurance 1imit is the size factor (2, p. 167).

Now we wish to make some reasonable estimate as to the mean and
standard deviatlion of such a size factor. In the absence of specific
test information about this factor, some engineering judgment must be
used. Shigley (2, p. 168) gives a figure of 10 to 15 per cent reduc-
tion for a 2 in specimen in bending. Let us pick for our 3 in speci-
men a mean of 15 per cent, a lower value of 10 per cent, and an upper
value of 20 per cent. In the absence of specific information to the
oontrary, it is customary to take such estimated distributions as
normal, with 6 & limits, so that

T% = 0.85

and ' 6% = 0.20 - 0.10 = 0.10
or B A L 0-0167
. k,

Now this distribution of k,, can be combined with the test results
to determine the final distribution of Sy for the part. Let us assume
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for 1llustrative purposes that as a result of the above-described tests,
the fatigue strength of the test specimen could be estimated by

- 5! = 140,000 pst

afie = 4,000 psi

Now we will use our estimated distributibn of the size factor kb to
correct S'e to the conditions of the part in service. This can be
done by the Algebra of Nommal Functions method, where
I
= 10,000 x 0.85
5 = 34,000 psi

and
¢ Jf2d 2+5202.0 20 2
2 A 5%

-y@.ag?- (4,000)% + (10,000)? (0.0167)2 + (1,000)2 + (0.0167)2

a-S "= 3,480 psi
e

A Monte Carlo solution to this ‘problem by the program in Appendix A
yields the following parameters (for 1,000 trials):

Mean, psi Standard Deviation, psi Skewneas Kurtosis
33,887 3,566 0.0L97 2.778

Again the Algebra of Normal Functions and the Monte Carlo solution
are in good agreemont. Also again, the nomal approximation involved
in the Algebra of Normal Functions shows good agreement with the Monte
Carlo solution. That is, the Monte Carlo solution shows a skewness of
0.0L97 and a kurtosis of 2.778 which are pretty close to those of the
normal distribution of a skewness of zero and a kurtosis of 3.000.

Proceeding in this manner, and also in the manner of Examples 3.1
and 3.2, any number of distributed factors can be incorporated. The
problem again lies in determining the true distributions of such
factors, This again serves to point up the need for accumulating
statistically significant amounts of data regarding these factors.
This sort of effort must be reserved for further research.

p———
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" In the above examples, it might occasionally be possible to use
some of the more sophisticated techniques described in Section 2,
for example, if the product of lognormal, or the product of n
standard normal distributions were involved. It must be stated at
the present time, however, that, considering the nature of informa-
tdon available to the designer about the distributions of engineer-
ing variables, the Monte Carlo method and the Algebra of Nomal
Functions method provide the most expedient solutions. The Algebra
of Normal Functions method nmust, of course, be applied within the
limitations given in Section 2.

Determining Strength Distributions
From Published Data

In a few cases, it may be possible to determine failure governing
strength distributions directly from published data by using the method
described above, If enough data is available from these tests in terms
of cycles-to-failure at various stress levels, and if the data is for
test pieces which are similar to the part being designed, then the data
can be converted to the desired strength distributions. Unfortunately,
it is not often that such data is available.

State-of-the-Art in Present-Day
Design and its Relation to
Design by Relisbility

A representative discussion of present-day design methods and their
relationship to the design by reliability methodology is in order at
this point. It has been mentioned that the nodifying factors which
éppear in Hquation (3.4.1) are usually presented as discrete values,
and thus they do not directly supply the information needed for design
by reliability. We shall now consider some examples of how these
factors are currently found and point out how they may be used for
design by reliability,

Size Pactor.-In Figure 3.7, Lipson and Juvinall (3, p. 109) present
a chart for size-factors, kb, v8. gpecimen diameter. Note that for

bending and torsion a range is given. In conventional design, one
usually uses an "average" kb of 0.85. This chart ocan be adapted

to structural reliability by making an estimate for the mean and
standard deviation of kb. A normal distribution can be assumed with

the mean of kb taken as the middle of the range, and the range can

- be assumed to cover 6.
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Surface Finish Factor.-A graph such as that shown in Figure 3.8
(3, p. 111) is typical of those used to present the surface finish
factor. In this case, the surface finish factor (for steels) is .
found fram an appropriate knowledge of the surface condition and i
tensile strength (on hardness) of the material. In the absence of :
large numbers of testa on a particular part, this graph is about
all the information which the designer has. For purposes of relia- !
bility design, this graph represents only a starting point. Faced ’
with this situation, the designer will probably have to assume a
normal distribution, take the value from the graph as the mean,
and estimate the standard deviation on the basls of experience and

Judment °

Shot~-Peening Factor,-In Table 3.1 (3, p. 1kl), the percentage ’
increase in endurance limit for a number of stiesls is presented.
These can easily be converted into shot-peening factors for conven-
tional design. For reliability design, however, these factors are
not too useful, and, again, about the best the designer can do is
assume a nomal distribution, use the given value as the mean, and
estimate the standard deviation.

Cold Rolling and Cold Stretching Factor.-Table 3.2 (3, p. 142)
gives the percentage increase in the endurance limit of steels due
to cold rolling and cold stretching. These can also be converted
to "factors" for conventional design. The situation for reliability
design is the same incomplete one as mentioned before under shot-
peening factor,

Quenching and Flame-Hardening Factor.-Figure 3.9 (3, p. 1L9) shows
the effects of quenching and fiame-hardening on the endurance limit of
a particular steels Such a figure may be used to compute modifying
factors for conventional design. The situation for reliability design
is the same incomplete one as mentioned before.

1
Corroolon Factor.-Table 3.3 (3, p. 152) permits the computation
of conventlonal correction factors for a typical steel. Mrom a

reliability standpoint, the approach would be the same as previously

mentioned, 4 , :

Flating Factor.~Table 3.4 (3, p. 152) pemits the computation :
of conventional correction factors, Again, for use in design by ;
reliability, the above-mentioned estimates and assumptions would '
have to be made.

The above examples are representative of the infomation avail-
able for the canventional design approach. A large number of
references, for example (L through 16), are available for estimating
these factors for almost any design situation. However, from the
design-by-reliability standpoint, these factors leave a great deal
to be desireds Much work now remains to be done in order to present
these factors, not as single values, but as distributions.
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TABLE 3.1 | O

EFFECT OF SHOT PEENING ON EIDURANCE LIMIT - SPECIFIC TEST VALUES (3, P. 1) \

- v Surface Percentage
Treatment Prior Prior to Increase in
Material Specimen  To Shot Peening Shot Peening  Endurance Limit
SAE 1020 Stesel Plate As-rolled Polished 9
SAB 1045 Steel  Plate Normalized Polished n ;
SAB 1050 Stesl Plate As-rolled Polished 22 '
SAE SL43L0 Steel Standard Quenched-and- Polished 18 :
o : drawn -
Ni-Cr-Mo Steel = Standard Carburized Polished Ry
Alloy Steel Bar Hardened Polished 2
Alloy Steel Bar Hardened Machined 23
SAE 1020 Stesl Flate As-rolled Hot-rolled 3L
SAE 10L5 Steel Plate Induciion Not-rolled 50 '
: hardenad
Rail Steal Rail As-rolled Hot-rolled 32
0.65 C Stesl Wire As-drawn Hot~-rolled L2 \
SAE 1095 Steel Wire As-drawn Hot-rolled 50
Ni-Cr-Mo Steel Standard Carburized Hot~rolled 23
NE 9470 Steel Standard Carburized Hot-rolled 50
NE 92L0 Steal Standard Carburized Hot-rolled 53
NE 8650 Steel Axle Quenched-and~- As-forged 100 '
tempered
NE 8650 Steel  Axle Normalized-and- As-forged 54 |
' tempered -
NE 8650 Steel Flat bar Quenched-and- Severely 90
' ' tempered ground b ‘
L340 Steal Shaft Quenched-and~ Chrome plating# 90 '
tempared 2
Phosphor bronze Coil spring Lo , !
- Beryllium copper Coil spring 80 ; .
8-816( Co~Cr-Ni Coil spring 80 P
18-8 Stainless  Coil spring 70 N
13~2 Stainless Coil spring ;

# Shot peening performed beforé chrome plating.

145




A

(

TABLE 3.2

EFFECT OF COLD ROLLING AND COLD STRETCHING ON EMDURANCE LIMIT -
SPECIFIC TEST VALUES (3, P. 1L2)

Material

SAE 1045
SAE 1045

SAB 1045

SAE 1045
SAR 1045
SAE 1045
SAR 1050
3.1 M
0435 C

0,20 ©

Alloy stedl
Alloy steel
Alloy steel

Specimen

Bar
Bored

Bored
Bar

Press fit

Press fit
Thread

Bars

Shaft with

fillet

Shaft with

fAllet

Shaft with

fillset

Surface Percentage
Treatment Prior Prior to Cold Increass in
to_Cold Working Working Endurance Limit
Cold rolling
Normalized Polished 6
Quenched-and- Polished 52
teampered
Qusnched-and- Polished 33
temperad ' '
Nomalized Machined 27
Notched Machined 120
_ Notched Machined 52
Normalized Machined 150
Normalized Machined 100
Quenched-and- Machined 33
tempered
Hot-rolled Hot-rolled 67
Normal iz ed-and- Polished 68
tempered
Nomalized~-and- Polished 56
tempered
Quenched-and- Polisghed 30
tempered ’
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TABLE 3.3

EFFECT OF FRESH WATER CORROSICN ON ENDURANCE LIMIT
OF A TYPICAL STEEL (3, P. 152)

Endurance Limit Endurance Limit DPercentage Decrease

— in Air in Fresh Water due to !
Treatment psi psi Corrosion i
Uncoated 31,000 15,500 50

Copper plated 28,000 28,000 0 :

~ " Nickel plated 23,500 23,500 0 Lo
: Chromium platsd 33,000 33,000 0
i
TARLE 3.4 ?

FATIQUE STRENGTH OF CHROMIUM FLATED PARTS (3, P. 152) L

o
, il
Endurance Limit iF

e

Percentage
Flating Decrease "
Thickness due to n
Steel Treatment in. _ pai Plating
Cr-No-¥ Kone 7k, 000 0 .
Cr-Mo-V Plated 15 hr. 0.0015 68,000 8
Cr-Mo-V Plated 8 hr. 0.006 64,000 1/ 5
CI‘-'HO-V ?l;o.t?d 8 hl‘., tlemed Oome 31’000 58 I i
250°C N
Cr-Mo-V Plts;tgd 1 hr., tempered 0.0015 62,000 16 !
250°C : ,
SAE 6130  Normalized, not plated None 33,000 0 S
SAE 6130  Normaligzed, plated 0.00018 30,000 9 r
SAE 6130  Normalized, plated 0.0045 32,000 3 |
: SAE 6130 Quenched-and-drawn, None 65,500 0
not plated ' \
SAE 6130  Quenched-and,drawn, 0.00015 38,000 57 , P
plated
SAE 6130  Quenched-and-drawn, 0.0045 41,000 38
plated :
= 148




As a preliminary step in this direction, we should point to the
work of Haugen (17) who has reported strength properties of metal
alloys in statistical form, giving the means and standard deviations
of reported data. Studies have to be conducted to determine the true
nature of the underlying statistical distributions to this data and
then to determine the true parameters of these distributions.

DISCUSSION

In the design problems worked out in this Section, the strength
distributions have been taken as nomal. Although this is a practice
used in structural reliability, it is not strictly accurate in many
cases. The assumption of the normal distribution is customarily
made for two reasonss :

(1) Lack of sufficient data for making a better
decision as to which distribution to use.

(2) The ease of working mathematically with the
. normal distribution.

It should be pointed out that there is really no basis, in many
cases, to jusiify this assumption. One of the areas in structural
reliability which needs thorough research is that of determining the
true strength distributions and their parameters.

STMMARY
This Section has provided the engineer with the basic tools,
both analytical and experimental, for determining the failure-
governing strength distributions of parts in combined-stress fatigue.

In the next Section, we will provide a parallel discussion for the
case of determining the distribution of the failure-governing stress.
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SECTION L

DETERMINATION OF FAILURE
GOVERNING STRESS DISTRIBUTIONS
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CIIATTER 4.1
INTRODICT ION

The problem of determining the fallure governing stress is analagous to
the problem of determining the failure-governing strength. However, instead
of determining material properties and factors for modifying these propexrties,
we are now concerned with dstermining distributions of loads, dimensions,
load factors, stress concentration factors, etc., for the part in sarvice.
Azain, the realistic determination of these distributions may be difficult,
gince most of them are commonly reported by their mean value only, or, at best,
a8 a range of nminimum to max.mpa values. :

_ Once their distributions are determined, their synthesls into the fallure
. governing stress is accomplished by the same technlques as those described in
Section 3 for eynthesiging the failure governing strength distribution.

In this section we will indicate how the engineer can determine in
practice the distributions for the various loads, dimensions and factors and
then eyntheaise them into the failure governing stress. An exarple w1l also
be given,

CRAPTER 4.2
LOAD DISTRIBUTIONS

As vas mentioned in Section 2, even so simple a failure governing stres
digstribution as _ :

s = P

X
requires that the load distribution, P, and the area distribution, A, be
known in order to treat s as a distribution. Therefore, in any structures
problem, one must first determine values for the distributions of the loads
acting on the part. Estimates of the loading distributions may come from
many sources, among them are:
1. Instrumenting actual parts in service.

2. Instrumenting actual parts in the laboratory.

Preceding page blank | s
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3. Instrumenting and testing test specimens, which
simulate the part, in the laboratory.

L. Obtaininz field service data on existing similar
equipment and adjusting the results to those to be
expected on the actual parts.

5. Using engineering judgment and experience,

Again, it must be stated that to find today actual test data in
gufficlient quantity and accuracy to make a confident decision about the
"correct" distributions of loads involwved (and their parameters) would be
the exception rather than the rule. Thorefore, in many cases it will be
necessary to rely on engineering judgment and experience in ordsr to
make a realistic estimate of the load distributions,

CHAYTER L.3
DIMEXSION DISTRIBUTIONS

Usually it 18 not too difficult to make realistic estimates for tbg
distributions of dimensions, In the gbsence of quality control informa-
tion and data, it is custamary to aseume that the distribution of a
dimension, such as the diameter of a shaft, is normal, and that the
tolerance of the distribution spans 6 standard deviations, Thus, the
dimension 0.520 in to 0.500 in would be assumed to hawe a normal
distribution with a mean of 0,510 in, and with a standard deviation of
d‘ - ‘OQE.Z) - 005@2 - 0.0033 mo

Sometimes a much better estimate can be made, besed on data from the
Quality Control Department. Hecords may be available on a large number of
similar parts shich have been manufactured by similar Frocesses,

It is, of course, impossible to obtain actual dimensions from the
manufactured part while the rart is gt the deaign level, but it is
possible to make a good estimate of the distributions of the important
dimensions of the part.
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CHAPTER 4.4

LOAD FACTOR DISTRIBUTIONS

The distributions of load factors will probably be difficult to
obtain, since usually these are reported as mean values only., If
enough test data is available for statistical analysis, this method
can be used. If a range for the factors is given, then a 60 limit
can be assumed to cover this range. In many cases, engineering experience
and judgment will have to be used to estimate these distributions.

By definition, the load factor, kl is given by
Pa
k=%
s
where
Pa = actual load
and PS = static load

Here the distributions of P and P_ will have to be determined, or
f(Pa) and f£(P ) respectivel?. Subseguently the distribution of k s f(kl)
can be determined using the techniques discussed in Section 2, for %he
distribution of the quotient of two random variables Pa and Ps.

CHAPTER 4.5
DISTRIBUTIONS OF STRESS CONCENTRATION FACTORS

Ordinarily, stress concentration factors are reported as mean values
only. However, since the stress concentration factor can usually be
represented by a function of the geometry of the part, it may be possible
to make a good estimate of the distribution of the stress concentration factor
by treating it as a statistical function of the part's dimensions. Naturally,
the resulting estimate will be no better than the estimate of the dimensions,
but, as was previously mentioned, good estimates for the distributions of
these dimensions can be obtained relatively easily.
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ILLUSTRATIVE EXAMPLES

An exgrple problem follows which illustrates some of the above
tachniques. .

Exsiple Li.l.-The stress in a member subjected to a bending load and
having a stress raiser, Pigure L.l, can be calculated f{rom

Mc

B'Kf“

vhere XKp = 1+q(K -1)

and it i the actual stress concenlraticn factor.

In this example the stress distribution will be calculated using the
Algebra of Normal Functions method. Therefors, the variables will be
assumed to be normally distributed, with the following parametexrst

| | ¥« 2 860 in-1b, Ty = 280 in-1b

gt - 105’ a,

Kt

q = 0.80,0 = 0

=0

d = 1,00 in,, &3 = 0,01 in.

In the equation for the stress in the membexr in question

c = d/2
1 =xd/6l
Therefoxe 8= KfHdé -Krlm;)-
(2) (X xd

e

g m s n A




Starting with the equation for Ky we have

c'zft-(")('l('t)

- (0080) (105) = 1,2

p——

od AP 2,z 2,2
‘qu,o_v;‘rxt + Ky 0, ‘dk

Also - -q =
(Q€.-q) = oK~

|

V(OBO) @2 + (1.9%(0)% + (©%(0)° =0 |

l.2 - 008 - Onh

g
and (qk¢-q) -y;thz + qu = 0+0=0
Then v -
e Kz - 1+ (qiz;"q,) -.1 + 0.11 - loh

which gives the final distribution

-if "lob mda‘xr- 0o

Kow to solve for the distribution of (’3‘3)
we use the pover formula for &3 (1, Pe &)

and O'dn - n?ln ld'd
or | 43 « (3)(@2)(0.00) = (3)(1)3(0.01) = 0.03
Then
(W) « W& = 2 860/L = 2 860 :
and * Ty « -2 (®)2(%)? + (33)2(¢)2 !
| - (@3)2 + (9,3)2 .

(1)° + (0.03)

g 2(0.09)2 260)2
we) - %V—-‘-——-LL—ZL—&M——W 860)"£0:0
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— 0‘(3/43) _V 8 1g.éooo9‘ ool (8 586 x 10’4)!“
or Twa = 293
and (V%) =(Kp)(Wa) = (1.L)(2 860)
TWE =L Qo
Then,
5o (rpve®) = 22 (L 010) = Lo 800 pas
8 = 40 800 psi

Txays) = W.h)e(aﬁ)z* (2 860)2(0)% (292)2(0)2
- T(169 1,00y = 121 pas

- Bat 2
. .

a-‘ - 6&-“/‘13)

Therefore '
22
a; . T (hll) » )} 190 pai
Oy =1 19 pst

m’

8 is normally distributed with

B__= L0 800 psi

T = 4 190 psi
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- Example li,2.-For purposes of comparison, a Monts Carlo solution to the
" game problem gives the following parameters h‘or 2 O0C trials):

Mogn, pei Standard Deviation, psi Skeuneas Rurtosis
- Lo L2 L 197 04042 2.91

This 1llustrates the good agresment between the Monte Carlo and the
Algebra of Normal Functions method when very small variabilities are chosen

In determining the failure governing stress distributions for other
cases, mothods similar to thoge given previously can be used. In some caged,
the uge of the more exact results for products, quotients, etc., of
distributions, a8 given in Section 2, might be required. From the design
by roeliability standpoint, the Algebra of MNormal Functiong and the lonte
Carlo methods present the most expeditious approachas.

CHAPTER 4.7

ITATE-OF-THE~ART IN PRESENT-DAY
IESIGN AND ITS RELATION TO IESIGH
BY RELIABILITY

Fresent~day design methods for failure governing stress factors are
very similar to those for failure governing sWrength factors. Such factors
are uguslly presented as discrete values end do not directly supply the
information needsd for design by rellability. Some exzuples of these current
methods are given next. .

Stress Concentration Factor.-lany references exist which give stress
concentration factors for various configurations under various loadings (2-5).
Lipson and Juvinall (6, p.222) present many charts for stress concentration
factors. An exsmple is given in Figure L.1, Here the stress concentration
factor is presented as a 8ingle value, for use in conventional design., For
purposes of design by relisbility, the value obtained from the chart can
be assumed to be the mean of a normal disirilbution, and an estimate has to
be made for the atandard deviation., Or an attempt can be made to compute
the stress concentration factor as a function of random variables as
described earlier in thig Sectiom.

" Notch Jensitivity Factor.-In the equation

K, = 1+ q(Kt-l)
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the notch sensitivity factor, q, is used to relate the theoretical strees
concentration factor Ki» to the fatigue stress concentration factor Kee

Lipson and Juvinall (6, p. 117) present a chart, Figure .2, which is
reprosontative of those which can be used to find q for conventional
design. The situation as far a8 design by reliability is concernad is
the smme as that described ghove for stress concentration factors.

A large number of references do exist (7-29) for stress factors for
the oonventional design approach. As in the case for failure governing
strength factors, the failure governing stress factors given therein
are not directly suiteble for design by reliability. There is much room
i;u'- resoarch in this area in order to put these factors on a statistical

is,

DISCUSSION g

In Example lL.l, we assumed that the failure poverning stress distribution
is normal. The seme objections apply to this practice as to the use of the
normal digtribution for the failure governing strength distribution in Section
3. Again, much data needs to be ganersted to determins accurately the true
stress distribution,

SUIMARY

Methods have bsen presented which will permit the engineer to determine,
or estimate, the distributions of variables and factors involved and then
arrive at the failure governing stresa distribution.

Two of the most useful methods from the standpoint of desipn by reliability
are found to be the Algebra of liormal Punciions and the Monte Carlo methoda.

Once the distributions for both the failure governing strength and the
fallure governing streas gre datermined, tis only remaining problem is to
determine the resulting relisdbility. This will be discussed in ths next
section, :
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CHAPTER 5.1
INTRODUCTION

- Finding the reliability when the stress and strength distributions
are normal has been discussed in Section l. We can jllustrate this
again by considering the stress and strength distributions found in
Sections 3 and L, examples 3.1, 3.2, L.l, and k.2 '

Using the Algebra of Normal Functions solution, we have, from equa-

-3
. o . (10,800) - (47,60)
[d‘ 2 +¢rf]/z [(7,190)2 ’ (h,19o)2] /2

S
e _
. - - 6,800 , - |
" 7 x 10° + 17,6 x 2097
26,80 | i
t- -5:’3?5 = 0.816 , B
from which . i
i
R = 0.793
For a comparison, we can use the Monte Carlo solutions
B | § = 17,61
ala - 6,8h3
® = 10,926
0‘8 - h’197 .

_ u7.6112.- 40,926
21¢
[(6.8h3) + (L4,197) ]/2

t o - 00838

b AR

' from which
' R = 0.799
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As would be expected, the agreement between the Algebra of Normal
Functions solution and the Monte Carlo solution is quite good in this

particular case.

When the stress and strength distributions are mot normal, & number

- of techniques are available for solution. These will be discussed next.




CHAPTER 5.2
L
DETERMINATION OF RELIABILITY WHEN LOGNORMAL
STRESS AND STRENGTH DISTRIBUTIONS ARE INVOLVED iy

A relatively common distribution in reliability studies is the
log-nomal distribution. It 1s used when the stress or the strength ;
ig markedly skewed in its distribution and when a plot of the natural o
logaritim of 8 or S versus their frequency of occurrence is normal. ;

In other words, if b
log, s = 8 (5.2.1)
then for &' to be nomally distributed, its density function should N

be . , [

- 2
: . l(s' -8 )
£(s') = -—LV== AN (5.2.2)
g.yart {h
8 : i
" ol
y
Z loge 8y
_ =1
8 = - (5.2.3)

~N
Z (lcaga 81)2 - M(‘s")2

i=1
6- t = ) (502011
8 N-1 )
and N = number of observations.
;
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The stress density function would then be (1, p. 89)

1 =1
(¢33 -
Le 8 - 8

[ Lo

_ ) —~
£(s) = e s for 82 0
8 d;.\’ZIf

Similar expressions can be written for strength, S.

To detemmine the reliability when both stress and strength distri- S
butions are log-normal we may use the fact that the logs of stress and .
are normally distributed, as discussed before. Then the method S

strength
given in Section 1 of this report may be used because i
I :
n(3') = £(s' - s") (5.2.1) 1
where ) , ‘
n(3') = difference distribution of two . i
normal variates S' and 8', which L
is normal itself. _ :f
g' = 1¢>ge S : (5.2.2) , ,I: |
' 4 LT
Consequently : | g 3
3 -5 -5 (5.2.L)
and ‘
2 2 - |
03‘ N JS' + 0;' , (5.2.5) : ) i
then ' \
e A)
' 1 "2\ g
n(3’) = —=—e 3" (5.2.6)
0'3. I '
.
.
2 /12

- j
e e .




o
N
!
The reliability, with lognormal stress and strength dis'tributions s 1s
thorefore given by
oo i
R = n(3') a3’ (5.2.7) P
o ' o
To evaluate this integral the transformation relating 3' and the standard- . e
jzed variable t may be used, which is S
= > i
3 -3 A
t - (5-2 08) ;
3' e
| I
The new limits of the integral are for : '{‘
. 3 ' {5
=0 , te.-— Lo
' ol
3 Lt
o E
_ and for el
| ' . A
3 = OO » { = OO aﬁ !fil Sl
Therefore i” Bs
e o
1.2 ’ ? f‘ 3
, "2t | IR
R Ld ——— O dt (50209) ,;;.' P
Gs J o
Now the value of R can be obtained from available tables of areas under i
the standardized normal density function, as illustrated in Section 1. P
If £(s) is normally distributed and £(S) is lognormally distributed, KRR
{ or vice versa, the methods given in the next three chapters should be used 4, :
] to determine the reliability. \
i
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CHAPTER 5.3

DETERMINATION OF RELIABILITY FOR GENERALLY
DISTRIBUTED STRESSES AND STRENGTH3

The reliability of a component can be determined from the basilc
concept that a no-failure probability exists when a given strength
value is not exceeded by stress. Tho probability that a stress of
value 8 exists in interval ds is equal to the area of the element

ds or to Al on Fig. 5.1 or
P(a -9845¢s *95)'1’( ) ds = (5-3-1)
1725821772 %1 4

The probability of strength exceeding 31 is equal to the shaded area
Azn or .

. oo IR

P(3)s) " /f(s) ds = &, | (5.3.2)

(7

¢ .
The probability of no failure, i.e., the reliability, at sl is the

product of these two probabilities, or

daR = f(sl) ds x / £(s) ds (5.3.3)}
S,

’ (4
The component reliability would then be all probabilities of strength
being greater than all possible values of stress, (2), (3) or
[~ -4

R -/dR - /f(a) /r(s) ds | ds (5.3.4)
-o© 8" |

The reliability can also be written as (3)

oo S
R= / f(S) f(s) ds| dS (50305)

e e g o<t
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Furthermore, similar expressions can be written for the unreliability,
@., of a component as follows (3):

o L 1
a - /f(s) £(s) ds | ds (5.3.6)
- OO0 - OO
or
o o>
& . /f(s) f(s) ds | dS (5.3.7)
-0® S

Equations (5.3.4) and (5.3.5) can now be used to calculate the

reliability of any component whose f(s) and £(3) are known. If these
distributions are normal or lognormal these equations, by transforma-
tion of variables, revert to those discussed in the previous chapter.
It must be mentioned that these equations carry limits of integration
applicable to distributions which exist from - ©© to +°®, Otherwise

these limits should bs replaced by the lowest and highest values the

random variables can assume. If they are not, then the Transform
Method or a computer program utilizing Simpson's Rule may be employed
to evaluate these equations and thereby determine reliability or
unreliability.

/74{
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CHAPTER 5.l

TRANSFORM METHOD OF DETERMINING RELIABILITY
WITH NON-NORMAL STRES3 AND STRENGTH DISTRIBUTIONS

s been doveloped (3) which consisis of a Transform

A technique ha
the general reliability equation.

Method for solving
The reliability expression
oD [ o :

R= £(s) as | £(8) ds (5.3.4)

- S

“can be rewritten by letting
ST oo

a(s) = £(s) ds (5.4.1)
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and
Pre-)
F(s) = /f(s) ds | - '(511.2)
s
Then ‘
— IR ! e
R -/ G dF ‘{__g};.l;.B):
o .
where N ‘
aF = 2(s) ds L (5:hul).

Tho limits have changed because the variables of integration
have changed. Vhere the lower and upper values of siress are - 0O
and ©© and of S are s and °° , respectively, the range for either
Gor Fis from O to 1 by definition of these new variables. Figure
S.2a shows a plot of F vs. G, the new varlables. Inspection of
Buation (5.L.3) reveals that the reliability is the area under
the G = £(F) cwrve, and is designated in the upper graph in Fig.
S.2a. This area may be planimetered, and ite ratio to the total
area bound by the axes, and F = 1 and G = 1 calculated, thus ob-

taining the reliability.
The unreliability in this case is obtained from

[- - I > -]

Q= £(s) ds | £(S) d3 ,(5’3;7.)‘

- oD 5
by letting
(& -]

os) = £(s) ds (S.h.S)-

S

;
|
1
!
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~
and
oo ,
F(s) '/ £(s) ds (5.L.6)
S
Then
‘ R
Q- /me (5.4a7)
o
where , %?
da = £(5) ds © (5.L.8) :
Figure 5.2b shows the plot of F vs. G and the areas giving unreli- ;

ability and reliability. An alternative expression can be written
for the reliability using

oo 5 ) o

. B Jg

R -/ [ / £(s) ds | £(S) ds _(5.3.5)
- 00 - 00 » _

and letting ’ | %é .
Fe) = [ £(s) do s ]
' ~o00 -
.
and |
5 .
a(s) = £(S) ds (5.4.10)
- 00

b
i
H




ke ] et 1

b "
go that
‘ ‘
R = /ms n (5.4.11)
[}
where
da = £(s) ds (S.h.12)

This reliability is illustrated in Figure 5.2c. Finally a second
axpression may be written for the unreliability which is

. o® s )
Q- / [ / £(s) a5 | £(s) de - (5.3.6)

By settiing
‘ .
as) = [ £(s)es . | (5.413)
- 00
and
s v L
F(s) 'J//ﬁ £(s) ds (S.Q.Ih)i
Enuationv(S{B.é)'becomea
' o ;
Q- / GdF (5.L.15)
° .
where - .
dF = £(s) ds ‘ (S.h‘.]:_él

This unreliability is illustrated in Fig. 5.2d.
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This method enables the evaluation of reliability or unreliability
for any distribution of stress or strength and for any combination of
two different distributions of stress and strength, provided the partial
areas, F and G, under these distributions can be found.

The methods of finding areas under the relativoly common distribu-
tions of gamma and Weibull will be presented later. This way the relia-
bility of camponents having stress and strength distributions that aré
normel, lognomal, gamma Or Weibull may be determined.

The accuracy of determining the reliability by this transform
method depends on the accuracy of evaluating the partial areas F and G,
of plotting them and measuring the area for R or Q. The desired accuracy
may bo obtained by evaluating the areas F, G, and R or Q by digital com-

puters.

Another digital computer method for evaluating R and Q for any
distribution, using Simpson's Rule, is presented later.

Determination of Areas Under the Gemma
Distribution for Reliability Calculations

Another distribution which arises in reliability is the gama dis-
tribution whose denslty function is given by :

.
N

e - B/’z sP
M(p+1) f'fq,

where l" stands for the gamma function and should not be confused with ;ri
the density function of the distribution itself. o

£(s) = (2.3.13) |

Partial areas may be found as follows:

"l -_ —y
Po <8 8) - 1 ™ / & A P as (5.4.17)
' r(e+1 1 ()

Let 8 = 1V, then ds = M dv, and when 8 = 0, v = O and when 8 = 8, ,
v - s,/ol. Substitution of these in Equation (5.L.17) gives




-v
rocacs s | SCEE iy,
(]
Pearson (L) tabulates for p » s
. -
Hup) = | & (/; " '(5.1.18a)
o
where :
wewfmTl laas)
Hence '
P0< 8 < s)) = Uuyp) [ERRERY
with . .
s,/»7 “yeuwypr1 (5-b-20)
therefore ~

u -—77%-;-1 (5.L.208)

Knowing,d » % and 8,, calculatingu, and entering Pearson's tables
with these values of u and /3 glves the numerical value of Equation

(5.4.17)

The following procedure may be used to determine /3 and 12 from
stress distribution datag

ﬂ - % -1 (5.’4-21_)
where
2
m
b= —§ (5.h.21a)
ns ' ,
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N
Z (s, - DY
1=1
m2 - N
N
=3
Z (s, - 8)
1=1
L -
and
o
| '7 - ﬂ+ T - T :
Combining Equations (5.4.20a) and (5 .h.ZZ)ﬁives
ue -2t
0'3

I
L.

!

(5.4.21b)

(5:k22c)

S

(5.h.22)

(5:4-23)

As an example, for a glven gamma stress distribution let 0‘5 = 3,000

psi and m3 = 21.7 x 109. It i8 required to find the area under this

distribution from s = 0 to s, = 8,000 psi. Then
8

m, - 052 - (3,000)2 = 9 x 10°

a2 9.2
J{n.7x107) 0.6L5

("2) (9 x 106) 3

be

W Boni o v s WY
o




Therefore : _ ) :
. H
ﬂ'%-l'ﬁr%m‘l'm :
. é Vi
. ',[
The tables for u = 2,67 and /9 - 5,2 give I(u,/a) = 0,621 = '//ﬁ f(s) ds by
interpolation. ' ' o

The garma stress distribution parameters, 47 and//3, for the cxample
may be found as follows: : _?
/-" 5.2 | L

N
\J

and

o ;o
8 . —220% .12 o

Therefore ' i

(s = & - 8/1210 B5.2 . - 6/1210 85.2 _ ﬁé

o Determination of the Areas Under the Welibull : |
Distribution for Relisbility Calculation : n
|
|

The Weibull density function (5, p. 91) is

-\
£(s) = -g(—-"%z-) Aot .,(3.7.21'.) (2.3.9)

Tho partial area under this distribution's density function is
given by -

%

Fe £(s) ds (5.4.2L)

I M —)
o
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or

s - 7\
Fel-eo (_71) (5.L.25)

Substitution of values of s,>£ , /2 and 7 in Equation (5.4.25) gives

the value of F. The correspon
This would then enable the calculation of the component reliability by

the Transform or Digital Computer method.

ng value of G may be calculated gimilarly. -

i
i1
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CHAPTER 5.5

COMPUTER SOLUTION OF THE
OENERAL RELIABILITY EXPRESSION

The general reliability expression

// £f(s) £(S) dS ds (5.3.L)

-o® T3

may be evaluated by numerical methods of integration adapted to digital
computers for expediency. Omne such method uses Simpson's Rule (6, p. 3L8).

The method consists of applying the rule to the inner integral over
finite, arbitrary intervals of the variable of integration until the
evaluation reaches the desired degree of accuracy and then reapplying
the rule for the outer integral whosa integrand now consists of the
product of the outer function and the terms in the result of the first
evaluation. This second evaluation is in turn carriod out until the
final degres of accuracy is obtained. The size of the intervals over
which the evaluation is made will depend on the error that can bs toler-
ated and the form of the function involved. The infiniteo limits of the
integrals must be truncated at finite endpoints which are located far

“enough in either direction to keep any area contribution outside these

endpoints at a negligible level.
~ Simpeon's Rule is
é .
f(x)ax ¥ D=8 [ £(x)) + Lz(x))
a

' +2f(x2)+. . .+2f(xn-2)

el - 2) + 26x) | (5.5.1)
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Where n is the desired number of uniform intervals, as shown in Fig. 5.3,

i.e.,Ax-b;a

, f(xn) = f(b), and f(xo) = £(a).
b
For any n, an approximation for f(x)dx can be obtained with an

a
error,

E< S_bl.:_ia.f K
- L
180n

where K is the maximum value 1 f L (x)' attains for x in interval
a x £ b. The value of the {irst approximation, ]'1, is subtracted

from that of the second spproximation, 12 , and the result is compared

with the desired accuracy, f . This comparison is continued until
| b

L -1 .3 £ f. Then I 1is the desired approximation for / £(x)dx.
a

Here a and b are the truncated limits of the distribution.

A similar procedure is used for the outer integral until the desired
accuracy is obtained either by extending the truncation limits or the
number of intervals or both. In this manner ihe reliability of a com-
ponent having any type of a continuous distribution of stress and strength
can be determined. A digital computer program for this method is avail-
able at The University of Arizona.




AX = Xk-xk_l

AX =Db-2
n

£(x)

L 5K b ' : Xp-1 %o
a b

FIGURE 5.3 DITEAVAL AID TARIADIE DESIGHATION FOR
SDMPS0N'S RULE OF LUMERICAL INTZIGRATION
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CHAPTER 5.6
CONCLUSIONS AND RECQMMENDATIONS

The methodology presented in this section allows the calculation of
the reliability of components, given their fallure governing stress and
strength distributions. These distributions may be nommal, lognormal,
gamma, Weibull, or any other continuous probability density functions.
Analytical, as well as transform and digital computer solutions have
been provided to calculate reliabilities.

The knowledge of how to calculate the component reliability provides
the necessary tools needed to design a specified reliability directly
into a component. In other words, the direction of chenges that need to
be made to the means, standard deviations, and other stress and strength
distribution parameters can be established and various values of these
parameters can be tried until the desired reliability is obtalned.
Specific design and cost considerations would dictate what changes should
be preferred. This is a fine case of a computer application whereby
these parameters can be quickly optimized to obtain the stress and strength
distributions required for a specified reliability, at minimum cost.

It is recommended that engineers, and in particular design engineers,
use these methodologies and also contribute to their refinement since the
advent of computers has made the seemingly unbearable labor involved
shrink swiftly to highly satisfactory proportions. Furthemmore, it is
recommended that the designer think in terms of reliabilities, i.e.,
probabilities of success and unrellabilities, i.e., probabilities of
failure, rather than in terms of the safety factor or the safety margin
alone.
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CHAPTER 6.1
INTRODUCTION

The previous sections have provided the theoretical approaches to
determine the reliability of mechanical parts by the design~by-reliability
methodology. It was pointed out that much statistical design data on
components subjected to complex fatigue made of materials being presently
used in the NASA epace effort need to be gensrated. The ultimate
objective is to fill the gap in the prediction of the reliability of
systems where purely mechanical components are involved. The great need
for this effort is exemplified by statements to be found in numerous
reliability specifications, and books (1 through 29). The methodology
has the goal of determining the reliability of mechanical components
once the failure-governing stress and strength distributions are known.
As discussed in Section 5, and indicated in Figure 6.1, the unrelia-
bility and then the reliability can be determined. '

The component of concern in this research is a specimen which
similates a shaft in service (30, 31). The specimen material for which
data needs to be generated is SAE L340 steel, Cond. C. as per MIL-S-5000B
(32). The loading consists of reversed bending and steady torque applied
to a rotating specimen with a stress concentration, which produces
combined-stress, or complex, fatigue. It is to meet this data nsed that
special fatigue testing machines capable of providing these test condi-
tions had to be designed and built.

The following chapters gifn the details of the design of these
machines. ‘ :

| Precediﬁg page blank
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CHIPEER 6. X
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Obj \A\’\, °
Thae maf< objecliive of the oroet Jeoarilod Ju Lhls seciwdr mae v busla i
2 ravinug rertine wmeetinn thot would fenercte Tallure data fox dasign Ly re- S
Tinhitily teshvidcoan by owupfeoring gpsclisent to 2 steady toogue aae a veversed o

[]
bending mocuent,

o r- P
Ipraligailion:

e Jdaslnn ol tho fatigee testiag wiciune was banaed on flve eritorias
(1y Tawe a blgh test yom fer Yoot coneration ol faflcwee dote, 193 use readily
cratlalle cuiszreial corpononts, (7Y provide loading msans to wevelop a steady
Lterque w1t @ ceversed beuliag monent, (4) aveomo.ate cylindrical test opeeis : 1
rens and (5)  neecept the reguired instmmaniation.,

t d

CDEf~tliemshel i coponents were lotated to perform the specified functlons
vhanaove. fhic van possinle.  [pecial crders were awided and loczzlly vaaufac- _
Lusee partd veve sopt o 4 wdajzram. - . e
mm.ifg; apeed of speciixu.~The tine required to fall a specluen is a fune- A

Cion 0f tha wovuleticas set fieause of the t=si maching. The hichesr fhe rom b

the leas time vequired four failure of test agecimens end the faster the life
distributicons enn be genersted at a speci;’}.ec‘. stress level., Tor esamle, nea
the envdrancs licdt of a material, a greator awuat of testing time is r«.qui‘ed,

K4 f

since 197 or twre eycles rrct be cccumlaot

|
e gpeads that can & obtrined for ranting purnosas, without using varia- o
ole spaed motors, sve 1300 rpm, 1807 ooz, and 5600 rpa.  The Lijhey rpm, 3600, 1is
ceslvod Lai 1800 e waxeld Lo acceptadble., The lewer rpm, 1200, was coasideved
sl and the copt of thlg rocor Io piere than the 1000 vow weboce.

nequired locdins nechiaiom. % torsional device eapalle ol producing 2« J
surliclont coaount of Cora.onel stress to Lail the speclien Lo stetic losding
WES UG, Pue apddratus ov the requiiesd benaing woaent was designed Lo pro-
duce a wnifoma henddng woaeat. -

The michine wvaz deslsnel for L0000 in~lb of steady torque aad 3049 in-lb of
reversael baading saxacai. Tl Jonigy Lol v obbiined Ly uodng @ eomsined
luad factor of two,

Tact spncloen,~1A5A s levls Rasearch Cancer specifled tle requirements
of the test specimen (52). Aleo the teer sspcc.i.:'.:z'z s Lo be desisned in

E!

>

Reproduced from
bz‘s’t available copy.
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conjunction with the SAP VIII turcise shaft; Merojet-Geucral D/10 2931273,
sleets one anu tvo (Sl). Cheet one ol the Jdrawing cupplied thie fabrication
processces of the tucbice shafit. The teet sneclomen was wot as claborate es
the turbine slaft, bLut the processes were closely folloved, The applicable
processes are covered in Padle 6.1,

The lerjest test specimen thrt tlie machlne was Jdesigaes for coull have
a major diaucter, M, of 1.5 In. 3Becouse cf the specificd material, 5AE
4342, a D of approximately 0.752 in,and ¢ ninor diamkter, <&, of 0,520
in. vasg sclected. £ proove vas included to incorporate a stress concentra-
tion factor. Tle radius oi the groove vwas selected as 6.158 in,, giving a
5C¥ of appromimntely 1.5, which corvclates with an area of high stress concen-
tration cn the SN VILY shalt, as indlcated in Table $.1. The fmevrican
Soclety for Testing laterials, Manwal on Futipue Testing (33) wes also adhered
to.

Instrunentation: -The major instrumentatlon conslsted of (1) strain gages
for static an! dyaamic straia neasuremeuts, () slip rings to transndt the
eslred Information off of the votating macliinery to a statlonary recorder,

() amwplificrs, and (4) a recorder to peimcnently recovd the strazin gage out-
puts.

Table G.l pgives a resure of the Jesicn requirements that werce followed
during the project as set forth by NAS! and pertinent correspondence.
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TABLE 6.1

RESUWME OF DESIG! CRITERIA

Components

Test Machine

loading Mechansim-
Steady torque

Loading Mechanism- __
Reversed bending
moment '

Test Specimen (See Figure 6.7)

Iaostrumentation:
Strain gages

Slip rings

Amplifiaor
Recorder

General

Rotating specimen, 3600 rpm desired,
1809 rpm acceptable; produce and

hold steady torque and reversed beud-
ing moment; holdiang chuck-1.5 in.
diameter meximum; simple design employ-
ing "off-the-shelf’ componeats.

Simple device to producé, hold, and
transmit desired steady torque of
5400 in-1b to test specimen.

Simple device to produce a reversed
bending moment of 3450 in-1b while
apacimen is rotating, )

SAE 4340 conditiou C-4, MIL-S-S000B,
certification of chemical and physical
propertics, unifowm quality, csame heat
and procegsing, heat trecat Roclkwell
"C" 35/40 as per MIL-B-6875 with mini-
mum tempering temperature of 1000 F.,
inspection as per MIL-I-6863.

De 0.735 4in. ,

d = 0,500 in.

r= 0.150 in.

SCF = 1.5 )

Dynamic aund static measurems:ts.

Transfer of strain gage data to ampli-
fler while specimen is rotating.

To handle static and dynamic information.

To produce a permanant record of strain
gage information.

Equipment to handle at least 2 sets of
information simultaneously.
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CHAPTER 0.3

SELECTION OF TESTING TLCIHNIQUE

Survay of Comuercial Companies

Many comercial compainles (3%4-30) were contacted. These coampanics neitler
produced nor possessad a fatigue testiug machine wvith the ability to produce
steady torque and reversed bending moment. The Budd Co. (4J) suggested that
Mable or Gjeadahl be contacted conceruning their fatigue testing machine (41),
this machine will Le presented later in this chapter. In conclusion, 2 commor~
cial maciilne could not ba located for this project.

Modifying Existing Machines

The University of Arizona's universal €atipfue tastinn machine.-BDased on
the negative survey, it wvas Jecided to design and Luild a new testing machine
or modify an euisting one, Four fatigue testing maclines vere considered. The
first was a wodification of The Univercity of Arizona'c Universal Patigue Testing
lachine, Model Number SP-01-U-~2, so that it could handle the combined-stress
fatigue problemn. A loading fixture would have had to be designed to couple~in
the steady torqua part of the desired loading., This fatigue testing machine
has a non-rotating opecimen. Uith only one machine available at The University
of Arizona, additional testing machines would have to be purchased.

Considering the purchase of additional machines, at a high cost, and the
extensive modification, the Universal Teoting lachine was considered not accapte
abla,

Modified R. R. Moore fatirue testing machine.-The second consideration
was to modify a commercially aveilable fatigue testing machine. An R. R.
Moore High Speed Patigue Testing Machine (4Z) would have had to be redesipguned
to provide the required steady torque. Preliminary work on the propoced modifi-
cation was done by Joe McXinley (42). Thic proposal consisted of incorporating
an energy dissipating device to provide steady torque, as showm in Figuro 6.2,
The dissipation of the energy developad from the ateady torque requirement was
very high in the above machine. It was decided that a simpler technique of
developing steady torque should be employed for this project. The required
modification for steady torque and the buying of the expensive R. R. lore
Testing Machines wvas not desirable for the HASA project.

Rughes fatligue testing machine.-R. Mughes (44) while working with Dr. D.
B. Receclogiu deaisncu a fatigue testing machine ghown in Pigure 6.3. The steady
torquo is Jdeveloped Ly a Lydraulic pups. A test specimen ic placed between two
bearings with the load belng applied on one end. This load for reversed bending
moment is applied by varyling the gearing ratios between two shafts.
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Actual gervica conditions are closely approximated by the Hughos Machine.
Hovever, the machine hos many {ntricate parts, it is complicated to bulld, and
requircd an enexgy digsipating device for steady torque. Thorefore, it vas
not selecte as the typo of testiung machline requirved for the projcct.

Toster fatipuce teating maching,-The fourth machine began with a suggestion
by Professor A. G. Toster (45), who indicated that the test specimen could be
held in a noa-revolving positioa with the required Leading loads rotating.
The steady torque requiroancut could be applied externally and varied as re=-
quizred. The principle used in this fatigue testing nmachine has not been found
in the literature survey, and ls thought to be a new concept. The bending
momont is obtained by applying a beading load to the free end of the test
specimen through a ouble cccentric. To obtain the raversad portion of the
bending monent the free end of the specimen ig then moved in a cirxcular pathe
The effect of holling tie specinmen stationary and votating the forces is not
certain. It s poscible that statistlcally signilicant Aiffereuces in zoGulls
be found vhen tuc cpecimen iG gltailonary as coupored to its btelng rotated,
Therefore, it was #elt that the machine could not be used for the present
projoct. Flpgure 6.4 is a sketch of the epparatus. ot included is the com-
plete structure for holding one end and cccentrically oscillating the other

end.

Literature Survey

A literature survey* was made in order to locate €atigue testing wachinee
to generats the deoirod failure data. '"References on Fatigue' (40) was sur-
veyed from 1955 to 1903. The only paper of interest vas the Symposium on
Larpe Fatigue Testiag Machines and Their Rosults, (47). Yo testing machines
capable of handling combined steady torque and reversed bending moment were
found in the paper. Other references (45, 49) were reviewed; information con=
cerning combined-strass fatigue machines was not found.

The Proccedinga of the Society for Ewperimental Strass Analysig (50) from
1945 to 1960, and "Experimental Hachanico” (51) £rom 1961 to December 1965,
were reviewed in an attompt to Locate a combined steady torque and reversed
bending moment testing machine. Several fatigpe testing machines wvere found,
but only one was of direct jnterast to the lIASA contractj 2 testing achina
built by Mabie and Gjesdahl (41). This pachine uses the four-ogquare principle
for applying the stcady torque wvhile the rotating bLean principle 18 used to
producs the bending moment.

The four-oquare principle {8 not a wnew principle for developing steady
torque. Tndustrial corporations, such as gear manufacturers, spaed reducer
manufacturers, and coupling monufacturers all use this principle to evaluate

their productsc (52).

% ,
Refer to Section 3 in the BIBLIOCRAPIY at the end of this report for a
diccussion of the teosting machinas which were found.
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In the Mabie-Gjesdahl Machline this principle was used to develop & maxi-
muy steedy torgue of CU9U  in-1b, hosever, the machine was only operated
ot a maxlruma of about 7008 in-1b O torque (41, p. 36). &t this loading
the machine produced a high pleeh vhine (52), a result of the pitch line
veloclty of tue spur geass belnc 3650 to 4000 feet per niiute (5¢). Also
the pre-sct towgue could not be maintained. The steaily torque, four-square
principle, is couplec with a reversed bending moment, as shoim ia Tigure 6.5.

The cenirved bendings moment vas anplicd to the test plece 80 as o slmu-
late a sluply supported boon. Througl the use cf a hyd csulliec cylinles and
assoclntad equimaent the required bending womeat load wag daveloped (53). It
appears ticl a recuction lu bending momeat might ccrus during the testing
phasz as a resull of tie nydraulic cylinler leakage. The bendiag moment is b
constant along the leagth of the test pleca for a speclfic value of the Lend- L
ing loads The wachine s Jealgaed for 5020 in-1b . ead oparated at & maxie
mm of aleus 3200  in-1b of Lending moeat. The reversed bendiag moment
wos pained througl the rotation of the tost siace in the four-square mechaniom.

The iehio-Ciesdahl test machine oporated ot 1200 rpm. The machine was
driven by « 3 hp, 1200 zpm iaduction metor (55). Mable (53) furaished two
asscrbly dravivzs (06, 57) and additional desigm {information as to the problen

avreas of hia test machine, as shown in Table 5.2, e

The exact instrumentation on tlhe Mabic-Gjosdahl test machine is not known.
Howvevar, the torque valucs ave measured and checked only in a statle situation.
The bending moment values were checked ane related to the pressure gage on the !
hydraulic eculpment. The load was applied stotically and tle pressure moted.
straln gages vers uced f{or the static torque measurcments end also for the
bending load. Thue bending lood stiain gnges uere mounted on the loading bar. {

The test mechine was calibrated dynamically wvith suitable wouated strain '
gages and slip-ring and brush assemblies. The exact equipaent 13 aot knowmn. :
Covrrelation of these dyaamle tests verce ade to the stressce obtained tl.rouga '
ealculatipns and an 8-1% error was noted (41). |

The four-sque re principle was selocted as the means of applying the steady :
torque and the roratiag bean principle uas’ selected for epplylng the reversed
bending moument. aAlso thio principle combincd with the votating bemm principle
for tho beuling moment 46 & proveu nrinciple for fatigue tosting. The major
advantage of the four-square principle is that the raquired horscpover Ior tha .
loading of the speclnen is juternal. Therefore, the driving wechanica only .
has to ovorcome the frictiomal losses of the machine. :

Correspondence vith Mable (58) indicated that the comuercially purchageable
corpronents excocedad 35320.29, Uith these thoughts in mind a test wachines
aimilar to tic HMabie-Gjcadahl principle was designed aad built at The University

of Arizona.

77R” : ocTucied from
l:a?e‘s)tr available cop:%
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Fatigue
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RISON OF TESTIIG MACHINES
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Vibration prescut.
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My luatricate p:r*t.,.
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Much vibration and uoi:)c is

possible at 1505 wpus or
sreatex.

Dissipates energy to

torque the specimen.

1/67 dlzmeter masduam speci-
et

ot & proven wmechine,
Jutaaatic chut ol nay Le
¢ifllcult. Torque may not
be steady.

Uses lorse mwtor

slusipates larpe cmounts of

vroven maclhina.
/4 dlamcter specimen wai-
T
Mot be mocified for combined
stress fotiguce.
I“i:-tt.rc for steady torque

st te manufactured.
I-‘ot proven foxr combinod loads
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ZeEaarks
LSS

Cost 35000.0) for comercial
p-"'r-.,.

toven principle.
Spe.:;‘\ = 10X .
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Yot chivsen for project.

isensive oacliine.
ot chosen {or project.
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CHAPTER 6.4

COMBINMED DEDING AND TORSION FATIGUE MACHIINE

Initial Decign of Test Machine

Sumary of initial desicn.-The danitial design of the test machine was based

on the amount of torque and bending moment requirved to completely fracture a
tost specimen with a minor diametor of 0.70U in. that rotated at 3600 rpm.

The required stotic torque was 7470 in-1b at ].03 cycles, and the required
bending moment was 4530 in-1b for complete fracture of the SAR 4340 speciwen
for the worse case condition. The machiine was then analyzed with a load fee-

tor of two. The iailtial design loads were 903G in-1b ia bendinmg and 153 G0 in-1b
in torque.

since, ' -
T (59, p. 55) (6.441)
Substituting,
. (15_009)(3600)
P 63 000
hp = 847

The {nterxnal horscpover, the lorsepowver that the specimen sees, wvas a large
valuo for equipmgat operatlon. The gear box capable of sustaining 847 hp
would have wzlohedi 1910 1bs with plysical dimensions of 19 in, wlde by 43 in. -
decp by 29 in. high. Since two boies are required the total welght, not
including auxilary components, was about 4300 1lbs.

+ Another Jl1fficulty was that the bearinss for the loading frame would have

had to be operated in an oil bath system to allow proper lubrication at 3600
THll.

Degirn recoumendations,.-It was realized that deslgn changes would hLave
to be n2de to obtain o more desirable fatigue test wmachine. Lowering the
internal horsepower was a necessity. Fquation (6.4,1) indicates that hp do~
creases as T and n decrease. The torque is a function of the diameter

‘of the specimen, therefore by reducing the diameter of the specimen the amount

of torque for complete [racture can be reduced, as may be seen Zrom

xd3

T-am c * %n 16

(644.2)

A diameter, d, of 0.5 in. was chosen which reduced the torque by a factor of 2.82.

R- roduced from %
\_b:ft available copy.

b - rERLTE
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Also a reduction of the rpm to 1800 proVided a more realistic selecfion of 3

some of the components. The main result of the reduction of rpm and T was i
that it allowed smaller and lighter components to be selected. A complete '
analysis of the fatigue testing machine follows. ’]
[

The University of Arizona Fatigue Testing Machine
e : L i

The basic changes in the design specifications of the test machine were
to reduce the speed to 1300 rpm and the specimen's neck diameter to 0.5 in, i
Each component was studied starting from the test specimen and proceeding :
around to the back shaft. The design of the components follows. l

Test apccimqﬂLSee Figure 6.7a) ¢
Streapth of Spcctman in Reversced qud;ng*OnLy .

Il ity S PSS, o, PO, W, WL, N

s o 107 evelos Y

5, €10 _sy§¥es 0.9 Sy : . (6.4.3) I

Sy = 160 ksi (60, code 1206, p. 1) 'E%LL

o o

Theraiore, - I

s s = 0.9 (169) InE
? ®10° s
~ Yo
. s w 144 ksi 4
e103 ﬁ

SIvnoan !
3 L
o=

i 8, ™ Sy 3™ T/a (59, p. 102) (6.4.4) .
= 10 !
I
Rearranging, _ :
_ s, 1 * ' i
) M- . (6.4.5) :
< - - !
: ' : }
-1 (sg)(m a/6h)
-

@ |
(144 % 10°)(r)(5.5)° | ;
32 | |

M e 1770 in-1b . - E

# The stress concentration factor has been omitted from this calculation in
order to provide a conservative analysis, so that the testing of solid 1/2
inch diameter specimens or of larger diameter specimens but with higher
stress concentration factors will be within the capability of the machine.
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Streagth o Specimen in Steady Toirque On{l

Strength ii steany torque wlll equal the torsionsl modelus of
rupture, or

Sa o 1;0 kel (09, code 1290, p. 9)

& = - (59, p. 5.) ' (6.4.6)

T B e

(s )(x bz
[ -] ........-- ARy focy-aatani e

...... ' (l.l[ ) B

- {110 10)L0L?L_l

T ® 708 in.-1b,
Those values represent the worst case to fractuie tho specloen.

Ioovd Pactors

& load factor equaling two was used o establish the desisn loads
for the fatizue test machine: for sorential increase in materlal strength
KI = 1.5 2ad Zor contingencles K? = 1.20. Thea the combined load factor is

KK, = (1.5)(1.33)

KlK2 = 2

1
locd factor =

The design loads for the test machine are 3540 in - 1b for bending moment or
2 x 1770 and 5400 in - 1b for torque or 2 x 2700,

Stress Concentratlon Factor
A stress econcentratien was incovvorated into the test specimen, de-
tails of widch are given in DY L‘ﬁ\”‘~673}~B~J02. This stress coccentration
is to develop a SCF approximatilapg chat in the SYNAP VIIT turbine shaflt. (See
Figure 6.7).! :

duced from
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cubstitution luto Bquation (6.%4.13), gives
Tos L4 0,972 (145 = 1)

&
X

!'r‘ = 1-42

N
e

-

subatitution into Equation (6.4.9), glves

lc D~ oo

1.42
L e 0.705
c
Miscellancous effects: kf = ]

]
Theorctical endurcace limit: S . & 9.5 53 = (G2, pe. 162) (6.4.11)

Sq = 160 ksi (63, code 1206, p. 1)

Thereiore,
¥
Y em 0,5 (150)
] - . s
L g™ u¥ usl

substitution iuto Equatlom (6.4.3), gives

Sé: (0.89)(0.35)(1.3)(3.705)(1.0)(60)

"
vitha S and Se 5 @ 5ell  Qiageam, Figure §.0, was plotted.

g 16

Polding finture for gpeciman, - & collet type holling fixture uvas desired
encbling the test cpecimen to Le tnstallel and rvemoved wlth relative case,

1s cuparior to presc fitelng the specimen iato a set of holiers.
fixture was a Ralas Tool liolder p

A keyny wac uachined or the ghe
transmission of torque. Tue rool lolder was nurchased witlout the cooling
equipaent and Interinl turezds. Also the collet uea modli
ment lin' was rawvel in owder to provide spaes for tle test gpecinen key.

Ilexdible
on the [ront sud

-

-
1
s

Qup
aT¢ ghat are fozatical and o larger ore on ti:e back shaft,

Reproduced from )
best available copy.

7he holding
art No. S§106-0"-Clf with collet pari 0. c-12.

st of the tool lolior to eunatle a positive

ieu, and an attach-

lings, - There are thvee couplingn on the test sachine: two

\
[
o

e s
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UVAZAGA - 67 Y-p-003. The sicr-Bath all scoel flewible couplings ware selected
for the task. Thelr ability to transmit torque, allou relatlve wovenknt of
shaits, theirv asaall size, ant relatively luw cost, arve some of the acviatages.
Tue siev-ldath coupling calculptions are preseated neut.  The Linve-nele, Palk,
cad Rzenpa couplings were also congiocred. Table 6.0 1ls a comparison of the
analyzed couplings.

ui;‘;.'ll,.%’.’.c?;.}.-.?:3‘.’3.‘:’.‘_.11?9.‘?...{2?‘.1

sier-Bath Catalog C-5,

Tn .
hp = :3‘:_‘5“'{53‘1".1 (6.4.1)

b BRI
63 433
Lp = 159 T(6.4.12)
service factor (SF) = 1.5
Rating = ip x0T % 100)
_ Tpm
156 x 1.8 3 1)
1635
15.4 L

:{at;n{: LY —— e d W e e

100 ‘.rpm

select Sicr-Dath size %, twated at 52 bp/lG) rpm.

oy Speed shaft (220 roo)

ho & 154

SF = 1.3

cntine o SBBA 1ed 2 1090
) e SON]

1 ~ @ 30.5 hp__
wting = 30 100 rpm

select Sicy-3ath size 3, rated at 8 7_hp/100 rpm.

Geax, LONESH " Jormaally @ oue-to-out pear ratio ir used fn the Jfour-square
privciple. It was telt that if a comaevelal gear box coulc Le used much would
be paincd., For instance, gear Tores provide tuele own enclosuie, they are
buile by exnerts in the field, they are tiwe tested, and the parts are readily

e —— e —————— "



N
TspLE 6.3
COMPAR IS0 OF COUPLINGS
High Speed shaft
Required Coupling Safety Roted
poupligg Rating Rating =~ Facto:r M
—sgjer-Bath 15.4 32.0 2.08 18050
__ No. 2 ’
std.
Falk 21.0 23,0 1.09 3600
11FF
rzeppa’™ 9.5 30.45 3.2 2500
0J
Low Speed Shaft
sier-Bath 30.8 80.0 2.6 12 000
No. 3
_ std.
Falk 35.4 35.0 0.99 3600
12 7
-
8pg¢. 1ifc = 1150 dayse
i
I

Eavelopc
Dinensions
_Dbia. YL

4 1/4 X
4 3/4

g8 7/8 %
7 11/16

7 1/8 X
16 5/8

5 1/2 X
6 5/8

9 3/4 X
7 15/16

Veight

- o Pl

13

60

33

75

Xal
E)

Max.
Bore

21/8

3 .9/16

31/8

37/8

215
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COMPARISCN OF GEAR BOXES .
o1
Required hp latiag g iy 2 !
yoit I (- techanical Therpal foge Retio |
rarrel(®) 153 173 63 209 1.52 E
53 - 7% !
":l 3
cepterm ) 193 207 73 1807 1.837 i
g 53 B |
: u
Fali: 193 210 57 (%) 189 1.84 e
[
' .
- i
1

a . - ~ at EA o1 ~ . !
Heavy ity Specd Reducers, "’ Catalogue pullctin 450 B, Forvel and e
Bimminsham Col, ILncs

b”Speed yaster Tarallel Shaft-type Cear Reducers,” Sulletin 6402, OSevies i
», Vestera Geax Cowporation. 7 1

C... . p
with cooling fans

i
—

R

M i i
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Hokor. Coupling

The appropriatl catalos, Tali rulletin 4163, becs, 1967, was usad, Trom
the mactine tocl's main crive, the cervice [octor cguals tuwo.

Faat

Equivalent bp = hp = &4

(€]

= 7.0 %
Equivalent ip = 15
Select coupling size S

Size 5 was nol adequate due to maximum bore of 1 1/2 in.. The coupling
mounts on the Ligh snced shaft of the 05 vyl gear box wiich has a shaft
diameter of 1 3/4 ia. erafose, select the ¢ ¢ coupling.

Method of rorquiys, ~ The torquing device selected wag the Hamsonic Drive,

Infinit-Indener, UL sevies. The largest lundexer vads selected due to the
large low spcec shait. The part No. iU LI - 200.

Elogctric mOLOEL” There are wany available motors that can handle the
requiced Torsopcier. S8 calculnted for the gear vou selection a 7.5 hp 18
requlred., ile celeetlon requircmenid inelude theso items: 7.5 hip, 1300 rpm,
and 460 V - 3 phase.

A Gencral Elcctric, 1aduction, squlrrel et 440 volt, 3 phase, Type

K Tri Clad 709 line smotors was selected. These wotors and starter units
verc © donation to The University o7 Arizonal's Relicbility Projrat to be used
on the Combined pending aad porslea Tatigul Tocting taching. he wotor has &8
JIA Z15T fymnc. in anproprlate nagnetic startes with push button controls
and the propoer iuscts was adapted te the votor.

A &40 V motor wWas acleeted over a 723V motor mainly becauce its entire
motor-starter set wp wad lcss in cost. The part numbers atc tanclcated in-
D/i1 VIKAS® ~5700=0=000.

cdigltal countey Helection. - several capanles were suyrveyed for an eight
digit"':'n:':éiv.':':.'.’i?if;hl"é-’of}utcr capabie of 1300 rpn. owever there was uot single
positive soply.

aight digle, »om drive, 1500 rpu mochanical counter was selected, part Lo

15 I~111515. 7The countar has 8 ouc=to=ona 1edr ratio.
The mechaunleal counter Ls driven from the mOLOT shaft. £ 2:1 ratio i3
utilized to aalatain the countey ;iglin che Jesign rpm. A nositive drive

pulley system wa
aesitlve Drive IE ts, ' 1A uced for the Jesigae

b

Veodns-noot digital mochouical countersd come the closest. An

g designed for the counwer cyobo. TLe Durliee LEB0OS gatalog,

o £ o i ,_,.__

e oy ey wemmpue WAL, ¥ f
37 e RSN v

O
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Positive Drive Selaction
Driver NEMA;213T, 7.5 hp, 1300 rpm
step-l Table 6.1 WEMA ‘méign B
Class of Driver - IT
Table 6.3 Iine shalts - Glass I1
87 = 1.7
Table 6.5 Continuovs oncration add 0.2

Final service factor = 1.0

Step-2 Design horsepower of counter

hp T

Max. static torque for digital counter = 1 ce.=in.

(1802) (1/16)
lp = 63 000

hp = 0.0009
Deafgn Ip = hp x OF
= (0.0009)(1.9)
pesign lip = 0.00171
Step-3 Table 6.1 Use deaign hp = 1/12
speed = 1750 rpm
select pitch = 1/5

Step-4 Speed ratio = 1

(6.4.1)

It was evident from the horsepower that any positive drive pulley vould be

adequate for the task.

selection of Pulley
Driver: 30 XL0O37
Driven: 60 X037

Belt: 220 XIN37

219
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Any center to conter distance was acceptatle.

The bese f{rame was designed to hold the
provide a mount for the loading {rome fulcrun, P/U YALASA-6700-D-032,
steel, wide-flange beams were used for longltudinal support.

wide-flange beam3d werc placed at each end to obtain the necess
the loading frame. These two beoidns were bolted as

D-009 .

Bage. frame,.

There are three mounting plates required for
6700-0-010, o of the plates were used to provi
boxes. Thc plates are volied to the gear box and the frawme and
{nto position on the frawme.
plate iu conjunction with the loading frame.
the fulcyum unit, restraining brackets for the horizonta
{ng mechanisn, end ¢ slot to lin
{sm that might be generated during stsvt up and when the
In addition, & restraining bridge wae mounted over each too
to prevent excessive vhipping whea a specimen breaks.

test

loading frame,- The loading feaae conslsts of several lo
racrts along with some commercisl componenta.
amount of weight tlat has to be hung on & lo:

To keep the weight low the

geayr boxes and

O

Two more steel,
ary height for
shown in D/ UANAS2-6700-

the baoe fyeme, D/N UAHASA-
de a surface for the gear
also welded
The third plate is used for an aCeessory mount
The plate provides a mount for
1 link of the load-
it the amount of ‘yhip' in the loading mechan-
spccimen breaks.
lholder in order

cally mamifactured

The design was based on the '
a¢ing bar to aroduce the required
lever am principle was employed.

bending umoment.

D/ ULIIAGA~6700-D-004 is the asscubly draving for the lozding frame. A bend-

{ng moment of 35460 in.~1b. was required from the leading frame. To locate
fom%‘ . The

the bearing lousings the lollowiug analysis was per

the forces at
Sy = 62 000 psi.

material for design purposes wad

SAE C1015 with a

Bearings and housing: Sgherical roller
{nside diameter and a maximum of 3 misalignment were chosen.
were required along with two adapter sleeves.
from service catalog No. 450.

R |
The |bearings were pressed into a bearing housing,

bearingé with a tapered
Two bearings
The bearings are SKF selacted

D/N UANASA-6700-

E-006. Grease cupd a¥é mounted on each side of the bearing housing with
clamps. A gasket is placed between the housing and cup to prevent grease
leakage.

Structural Analysis of Bearing Housing

From Figure 6.TP»
. M=FL
\ 1w 3,375
M = 3540 1n-1b

(6.4.13)

e e v
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a) UANASA TEST SPECIMEN
6700-B-002 ‘
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| F=1200 Ib. F=12001b. - i
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|
;
"
l

3540°

MOMENT 7
{in-1b.) )
, 0] BENDING MOMENT

o] LOADING FRAME ANALYSIS

FIGURE 6.7 LOADING FRAME ANALYSIS

AND TEST SPECIMEN




therefore,
H 3540

Fa~ =

1 3-37?

e = 250 P = 1050 1b. Thig force will be conaervatlvely

vtaken to be 120q 1b. pedibutaiduduate

From FPigure 6.5-%, Ting in tension,

g .% (6.4.14)
b9
(1)¢1/2)

o= 1230 psi
Factor of Safety = T2

Factor of Safety = 51,6

Yrom Figure 6.3-e, luz in temsion,

6090 (6.4.14)

a-;- el e g

A (/5 - (174 (172)
o= 1600 psl

Pactor of Safety = o = 33.3

Bolt aAnalysis

The bolt was 2 standard hardened steel shoulder bolt that would fasten
the horizontal link to the beariapg hcusging.
From Figure 0.9,

= :‘:— ' (6.4.15)

1200 _
0.049

T = 24 500 psi

SAE 2 bolt (63, p. 247) with proof load = 55 000 psi

Factor of Safqty a 5%23 - 2,04




CIRCULAR SECTION

0.5"
1200 Ib. |
600ib, 6001b. ' ... 3

LUGS o<1—1/4" DIA. ;
l —f 1" 1
1200 1b.
(a) (b) (c) P

LUGS

600 Ib. —{ 0.5"[+—

O

N

(4}

—_
)

— 05"

600 Ib.

(d) (e)

FIGURE 6.8 BEARING HOUSING DIAGRAM
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1200 Ib.

Y

1200 Ib.

FIGURE 6.9 BEARING

174" DIA.
A = 0.049 in?

HOUSING FASTENER
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The horizontal link allows the required force

to be generated from a central point, D/N UANASA-6700-B-013.

Horizontal link:
Structural ‘nalysis of Norizontal Linik
From Figure 6.10-8 the point of meximum moment is at the center of the
link. -
Therl’ ” '
0w —ﬁﬁ—— c = 3/4" (6.4.16)
MaTrl
= (8.5)(1200) S
M= 10 200 in-1b LT
From Figure 6.10-b,
La == )@ - 1) (6.4.17) !
12 o i
1 3.3 3,3
1= 0.277 in.* 3 A
_(10_200)(3/4) A
0.277 h

Cwm
g = 27 700 psi 62
Factor of Safety = 7.7

The forces in the loading frame are traasmitted through

(6.4.14)

Vertical links:

_1200
(1/2)(1)
25.8

two vertical links, D/N UANASA-6700-B-014, which are iu tension.

C = A
62
2.4

Structural Analysis of Vertical Link
F
o

From Figuve 6.1l1-b,
g = 2400 psi
Factor of Safety =

Link bolt: The link bolts are 3/8 diameter SAE grade 2 bolts, with area
225

Vof 0.755 in.




l. 17.30 >
B 865 ——
(o} o] O
1200 Ib. ¥ 24001b. 11200 Ib.
MOMENT 710,200 in.1b.
0

(a) BENDING MOMENT DIAGRAM

e—— | —»

%l

. L Q375 L5
7).

(b) SECTION AT MAXIMUM STRESS

FIGURE 6.10 HORIZONTAL LINK DIAGRAM




T 2400 Ib.

- o wf

- -

L

|
/

LINK BOLT

2400 1b.

(a) VERTICAL LINK ASSEMBLY

FIGURE 6.1!

T 12001b.

O

0111/ 0.5*

<t—|.0"—»>

O

l'lzoo'b-

(b) SECTION -ONE LINK

VERTICAL LINK DIAGRAM
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C

Structural Analysis of Link Bolt

Te § (6.4.15)
— r L12®
SR TR e o
4 {EP»BSO psi (6.4.19)

The strength of ths bolt is given as 'SS 000 psi (63, p. 2L7)

Factor of Safoty —25-- .&5 -
]

o R"
a

— ~ Loading link: The loading link was used a= the lever to hang o
- ueighta to produce the required bending mament. Oce &d of the loading .

link, D/N UANASA-6700-B-016, has a receptacle to bold ths fulcrum block, :
T D/N UANASA-6700-A-017. The loading link was designed as followss

== Trom Figure 6.12-a, | : ‘
IK = 0 (6.4.20)

2(2400) - /WO . T

——

We 126 lbo
) ¢ (6.1,.21)

By ¢ W =200

. 21:& 1&
- : - - -

Rl -‘227,3 _lbo
From Figure 6.12-b, : | |
- ()2 -2y - a2 (6.1a7)

1- & w2 - ] - aotm?

I=- 00726 ' ccﬂé

I = 0.708 in®




=
2
3

WWWMWWWWWMW

*R2= 2400 b,

(ads

¢
|

-

s o e e s s e e g

r————-———-———
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FIGURE
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0

(a) BENDING MOMENT DIAGRAM

0.75
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Then, i _
o= "‘.im (604- 16)

Yo o e .

-i' (45LE) )51.06) '

1 . ——

o =] 6750 pat,

-
+

Y .
Fa 5 14 2
' actor of fafety = ‘ 5.75 9.2

5 e
Fulcrum unit and block: The fulcrum unit, D/N UANASA-6700-B-012,

was the knife edge used 2s a pivot point for the lever am. This unit mounts
on the accessory plate and can be moved. The fulcrum block, D/ UANASA-6700~
A-017, was the receptacle for the fulcrum point.

Electrical system. -The electrical system provides for the test machine
440 V, 3 phase, 60 cycle power to the switchbox. From the switchbox the

power goes to the motor. An automatic shutdown circuit s utilized, D/N UANASA-

6700-D~003, to release power to the motor when the test specimen breaks. This
circult taps one of the 110 V lines of the switchbox for its controlling power.

Indexer Flan§§; -A mating unit had to be designed to couple the Infinit~
1

Indexer to the Falk gear readuction units on the back shaft. The mating unit
was called an inlexer flange, D/N UANASA-6700-C-007 and Figure 6.13.

Calculations
The bending loads are negligible.
Shear streas in hub with keyway:
Tise ™ THSS x  Gear Ratlo

= 5400 R 1084
T e 9950 in-1b

LSS
7w X ‘ (6.4.4)
J
J = J»*‘-l-'-—.- (6.4 22;
32 [ ] L]
But, '
LS 4 4
Jew m3g (4 - d))

H
e rfmen

oo 38

by
3
;.
{

e
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whare:
d =5 in,

3.062 in.

™o
3

’l
e B G- 3.062%)

3= 52.7 1n?

na

Substituting,
_(9959)42.5)
2.7
T = 472 psi

62
Factor of Safety = /7 - 131

Shear stress in shank with hole:

== . xm a§5 ' (6.4.4)

% 4
J = 52 (1.875

Jw 1.21 in.2

. (2950)(0.937)
1.21

Tw 7700 psi | . _ ﬁ

Pactor of Safety = ~7é%- u 3.6

Shear stress in bolts In flange: ~

There are 6-3/8 - 24NF bolts used vhen coupling the flange to the Infinit~
Indexer.
6FReT (6.4.23)

pa £2950
(6)(1.44)

Reproduced from% F = 1150 1b
| best available copy- r .

Tm -

I ) !

A ® 0,001 in.”
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1150
0.5509

7w 14 200 psi;

with SAE Crade 2 bolt the proof load = 55 000 psi (62, p. 247).

Factor of Safety = %;:—:-5 = 3.808

Back shaft; The back shuft 18 the low speed shaft and only carries
torque. The ASME code for shaft amalysis vas adhered to.

~ calculations
= rom =2 ea? 4+ c1? T (62, p. 478) (6.4.24)
— ¢ 3 m t > B e
= st d
- 3 -

vhere:

T = 9950 in-1b. = 16 000 in-1b. %
o : C, = 1.0 (62 p. 478) rotating shaft - steady torque

, - .
v

,d = 2 in.

I

The bending moment was negligible, therefore consider ? cmuz = 0.

-~

. 1 7] i
Wt Tog El.omo 000)]

Ty 6370 psi
i T4 ‘should not be greater than the smallex of:
T,  =0.305s -
ALL y
: or
dALL Ut

Using SAE €1020, cold drawn steel with,
Reproduced from
S ® 79 000 gad best available copy. %
y .

Sui - 80 000 psl

233

R S ¥

WAL S er ‘:4




C

Therafore any raterial better than 0AR

Accessory Components,

= (0.18)(80,000)

T
daLL
Ty = 14 400 pai
ALL
14,400
3 an € g e a—
Tactor of Safety T.37 = 2,20

£ €1020 is satisfactory.

- The following compouents were manufactured but

do not vequire structural annlysis.

1.
2
3.

4.

334

$lip ring bushing
Slip ring brushes mount '
Mechauical counter mount

Counter bushing




WPTER 0.5

INSTRUMENTATION

General Equipment

Strain gages.-sStrain gages will be used to weasure the strains in the
specimen induced by the applied torque and bending moment. The strain gages
— selected are of three lynamic types, one for torque, and two for benuing
moment .

— It is very difficult to place strain gages within the confires of the

' specimen groove for all test specimens. Therefore a correlation vill be de-
‘veloped between the groove of the test spaciuen and the shank of the epecimen
boldor for the Lendin: moment data, thereby not requiring strain gazes in all
specimen grooves. The selected strain gages are nresented in table 6.5.

e §lip rings.-Slipsrings are to be used as a means of bringlng the strain
="— gaignal from the rotating machirery to carrier amplifiers. The selected slip
—  ringe and their brushes are Breare AJ-3005-A8. The manufacturer suggested this
slip ring since it has a maximum mumber of coatacts per ring and low electrical
noise. Figure 6.14 shows the strain gapes, for torgue and bending moment,
and the slip ring locationz on the test machine. ' :

tmplifier-Galvanometer-Recorder unit.-then the amplifier-galvanometer-re-
= corder unit was sclected, selection started with the amplifier., By selecting
the lonewell Hodel 119 carrier amplifier system to amplify the stroin signal
a companion set of palvanometers were recomueaded Ly the manufacturer, namely
the M1650 galvanoweter. Also when the zalvanocweters wera selected the manuac-
turer recamended the Model 906 C-1 recorder. The advantage cf this type of
selection of equipment was that each unit was matched to the other. Table 6.5
presents the selected equipment.

N

°  Calculations for Bridge OQutput

Bridge output {or torque.-A conventional arrangement for dJdynamic torque
measupenents was outdined from Perry and Lissner (63, p. 208). This arrvangement,
ghown in Figure 6.13, coupensates for temperaturc, eliminates effects of axial
and bending strains, and minimizes inaccuracies due to contact resistance varia-
tions.

\ ' /

Calculatious

The strains in the adjacent legs are subtracted algebraically and in the
opposite legs are added algebraically. For an applied torque, the strains

. . ] Reproduced from

est avail =&
able copy. I

%M§J
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Part
Number

3243-190

3x4 -
M15E-240

C6-121-
R2VC

AJ-8005-A8

9056 C-1

M1650

119

TJ\BIAE 6 . 5
INSTRUMEHTATION
Catalog
Manufacturer Rumber
The Budd Co. BG 2400
Instruments
Division

" [} ]

11} 1]
Breeze Corp- 66SR
oration, Inc,

Honeywell D=-2009

" D-2007

" D=2005
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1
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will be in proportion to the chlange in resistance of each cage or
Mlé-s-c
082 % .€
AR35+€

AR& ® -¢

Then the bridge output (DO) will be proportional to:
DO = IR, - AR2 + AR3 - AR&
= ¢~ (~6) +€ - (-€)

BO,. = be

Equation (6.5.5) indicates that the bridge ouput will be four timss the

output of one strain gage.
For axial'strains, the strains will be porportional to:
r
Mi“"‘ 1“1'2,3,4.

Thus, axfal strains will cancel out.

(6.5.1)
(6.5.2)
(6.5.3)
(6.5.4)

(6.5.5)

(6.5.6)

An estimation of the strain which a gage will measure was accomplished by
considering the stresses that the toollhiolder would be subjected to, sea Figure

6.16. The maximm strain in 2-dimensional stress is

o KO
€ == 1 - ..-—-—2.—
1 E
but, in this case
0, = -0,
then, ‘ o
o, (L 4+ u
¢, - 1 (E )

However in pure shear

Substituting,

(6.5.7)

(6.5.8)

(6.5.9)

239




GAGE MEASURES STRAIN IN
o DIRECTION

i
i
T 0=~ T T |
|
|
!

FIGURE 6.16 "TORSIONAL STRESSES FOR
ONE GAGE

240




The shear stress of the specimen holder was calculated, since the torque
gtrain gage is mounted on the holder.

T omm e " (6.5.6)

Prom the calculatleons of tlie design torque to fracture a specimen,

SN T L] 5["',.)0 in"}l}
c= 1l in.

for a cylinder,

J =L (a:: - ) C(6.4.22)

L gt ;5%
A (20 - 1.31257)
&

in. (6.5.10)

L 0D (6.4.6)

[N

Jwl.

T = 4200 psi
Substitute into Equation (€6.5.9) for steel:

E = 30 x 10° pst

) p=0.27
a o w 6200001.77) 2 1078
y 1 30
€ = 173 microln/in.
Vith four gapes ia the bridge circuit, the bridge output due to the torque
would be
BO, & 4e |
= 4(173)
BOT % 692 microin, in.

Bridge output for bending moment.-To get the desirable output from the
strain gages in response to a pure bending moment, they must be mounted and
electrically connected as shown in Fig. 6.17. Then for an applied torque, all
of the strain gages, Fig. 6.17, for bending moment will sense a strain of the
8434 sign and because €] - €1 + €1 - €1 =0, the torsional strain outputs will
C4ncel as they should. A similar argument holds for axial strain outputs and

tias will cancel. The strain from the pure bending moment may be calculated
8¢ follows:

, 241
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Calculations :
ARl & 4€ (6.5.11)
A’{z & -¢ (6.5.12)
M & 4¢ (6.5.13)
&R, & ~g (6.5.14)
B0, 2 g =(-€) + €-(~€) (6.5.15)
I)OBM =4 e

The stx;aln vhich a gage will meagsure can be estimated by
€= ,3.. (605017)
E

wvhere, v

0 o “}‘1& . (6.4.16)

Frona the design calculations for the fracture of a specimen in bending,
the required morent is

N s 3540 in-~lb

it 4 4
1= —E-z-;(do - di) (6.5.18)

and . Iem (605.19)

N

Substituting the answer, Equation (6.5,10), into Equation (6.5.19),
4
Ie =55 & 0,64 in.’

vith
C= 1 ino

(3540)(1)
0.64

%« 5550 pat | (6.5.20)

Substituting Equation (6.5.20) into Equation (6.5.17),
5559
30 x 10
¢ = 184 microin/in,

€ =

t
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then the bridge output due to the banding moment would be
BOpy = le
L(184)

DOBH = 736 micro in/in

The maximum gensitivity of the amplifier can produce a full scale
deflection with a strain of 50 micro inches. The torque measurements
will utilize the recording paper with the minimum at one side and the
maximum at the other side. The sensitivity ratio is the measured strain
to the actual rated strain of the instrument for full scale deflection.
Then for maximum torque strain the sensitivity ratio is 13.8. Similarly,
for maximum bending moment strains the sensitivity ratio is 29.L4. These
are highly acceptable values because they will provide high accuracy of
measurement of both the bending and torsional stresses involved.

Machine Drawings

Figuree 6.18 and 6.19 show the overall machine. Figure 6.18 shows
the front view of the complex-fatigue reliability research machine and
Figure 6.19 shows the top view. The major components involved are identi-
fied as well as the width, height and length of these machines.

i
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1. Motor ' . 14. Brush Holder
2. Gearboxes | 15. HMotor Bracket
7. Loading Frame Bearing 16. Mount Bolts
9. Test Specimen . - 17. Loading Frame
10. Slip Rings and Brushes 18. Weights
11. Counter ' 19. Machine Mount
12. Coupling ‘ 20. Floor Mounts

13. Safety Bridge -

S¥¢

FIGURE 6.18 COMPLEX-FATIGUE RELIABILITY RESEARCH MACHINE -~ FRONT VIEW
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1. Motor

2. Gearboxes

3. Coupling

L. Infinite Indexer
5. Backshaft

\
o

bob

6.

Coupling ‘
Loading Frame Bearing
Straight Shank Toolholder
Test Specimen

Slip Rings and Brushes

FIGURE 6.19 COMPLEX-FATIGUE RELIABILITY RESEARCH MACHINE - TOP VIEW
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CHAPTER 6.6

COST ANALYSIS

The total cost of the fatigue test machine, as given in Table 6.6,
ts $3572.95. This figure does not include the cost for the test specimens
and the instrumsntation external to the machine, presented in Chaptaer 6.5.
The University of Arizona fabrication cost figure is for the material and
labor of those components that nceded to be manufactured. The cost of one
specimen of the type specified in Table 6.1 is $3.05. The total cost of
the instrumentation, external to the machine, as given in Table 6.7, 1s
$4728.00.
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TABLL 6.6

& Do e
COST ESTTMATYE FOR TEST MACHIUE * e
BASED ON DRE MACHIRD
SUPPLIER CcOoST
AT NI PER TOTLL
1T RAXE O REQIIRED  JTEM cost
Teol holder Balas 2 $75.00 $153.36
Sla-p=C-12
Collets Dalas b 16.20 32.00
C-1%: 3/47
Counlire, frort Sler-Tath 2 43,70 43.0C
Beariags, SKF 22211-51¢ z 21.00 42,00
loading
Beoring si-11 x 2 ) 3.09 6.00
adanter
Gear reducer a) Falk 2739 Yl: 1 1891.09 1591,00
1 fusy. do. 23
1 Assy. Xo. 12
b) Cooliy: fans
ofith ¢ach unlt
¢) Drilled motor
brzoket
) Falk 6F coupling
Counling, Sier-Bath lo. 3 1 94.00 84.70
back shafgt ’
Infinit-Inlexer United Sloe ’ 1 130.99 13¢.00
Machinery HD UI
straic oo Budd 324 5-190 1 pka. 37.50 37.00
Co-121a2VC 1 pkg. 75,34 7.0.00
3X4M15F-24D 1 pkg. 13 ,v0 102,90
Slip rings and Breeze 1 131.00 131.30
brushes AJ-83305-A3

i T i |

i‘.
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3/8 4n. Mlate
tlecerie(®
totny

(z)

tor Starter
Countsar
Revolution

Lialt Suitch

The Uriversity
of Arizoma

The University
of Arizona

Positive Drive
Pulley

tulley

Eelt

raint

tiiscellancous
Bolts, Nuts

lubrication
Cpecial Tools
Sponner wrench
Crcase fun

Grzagse fictinags

TOLAL

———

et g . ¢ 2oy

8svm 17 x 60

TABLE 6.6 - Continued

COST ESTTMATE TOR TEST MACHINE
BASED OU ONE MACHIKE

SUPPLIER
ANRD
PART NO.

26" x 36"

G-E- 51:'.13‘\'?{ ?02
G.E. CR 125

104 .‘sB.\

Veader Roct
Serfes 1115195

joneywell
Micro Switch B2

Fabrication

Flectrical Shop

turkee-~Atuooad
3011037
601037
220%1937

Rust-olewn

COY'
NUMBER PER
RIQUILED ITEd
2 $ 13.00
1 16.03
1
175.233
1
1 45.65
1 3,90
1
1

Q.
donated by General Electric Co., Phoenlx, Arizona

TSTAL
_COST__

$ 26,00

l() o'}u

54,65
3.00
300.00
90.00

8.90

5.00

40,90

20.00

15.00
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i
: TADLE 6.7
COST OF INSTRIRENTLTION
. : , NUMBER
ITEM SUPPLIER PART_NO. REQUIRED €08t
i pasic Recording Honeywell 806C-1650 1 $1325,00
Oscillograph
1 Grid Line System Honeywell 901343 | 200.00
Hiniature l&~channel Honeyvell - 1 350.00
B Hagnet assenwly
' Ssulainiature Honeywell M1650 2 270.00 4= 050
~ Galvanometer ' !
b Carrier Amnlifier, Nonaywell Hodal 119 1 1600.00
9 Basic system less
3 channels
’ Carrier channels ~ Honeywell Model 119B-1 2 809,00 <4 2400
i Kodal Linagraph Bastman-Kodak 100338 20 bxs 183.00
' Direct print :
paper : S
X TOTAL $4728.00
; 4250
0
| &
- W 711/ é';u,;,u(a{ Cojf i $ Do afe
a 7‘44( s 44)2«(;5/ o e
3 Vel ety g{gr J'/f"’lc.
)




CHAPTER 6.7

CONCLUSIONS

The major effort as reported in this section was to design, develop, and
build a combined-stress fatigue machine at The University of Arizona. The
coabined stresses belng combined are those from reversed bending and steady

torque.

The initial design of the fatigue machine utilized a 1l:1 gear ratio.
The gears and required equipment would have had to be speclal order items.
The required gear box was too large and the associated lubrication equipment
quite complicated. Therefore comnercially available gear reduction units
were selected for this research application.

The initial design speed of the fatipgue machine was 3600 rpm. Major
problems arose because of this high rpm. The gear raduction units became
extremely large and cumbersowme, thus a large induction type motor (40 hp)
would have been required. With these facts in wmind the rpm was reduced to
1800,

The four-square princlple is used to apply the torque. The major advan-
tage of this principle is that the motor supplies only the losses present
within the gear reduction units,

The fatigue machine is capable of applying 150 000 psi of bending and
110 000 psi of torsionsl strass on a ona-half inch nominal diameter, SAE
4340, cold drawn heat treated to Rockwell "C" 35/40 steel test specimen. The
combined-stress fatigue machine was designed for 5400 in-1lb of torque and
3540 in-1b of bending moment.

The specimen {g held by a set of collets. These collets are not capable
of holding the test specimen from slipping when the maximum amount of torque
{s applied to the system. Therefore a keyway has been machined into each end
of the test specimen,

The major portion of this fatigue machine consists of commercially avail-
able, time tested components. Therefore the machine could be readily repro-
duced, and the cost is relatively inexpensive. The total cost of the Combined
ggnding and Torsion Fatigue Machine for Reliability Research is less than

600,00,

Two of these machines have already been built and instrumented and are
presently operating satisfactorily, except for some problems encountered in
the mounting and reliable operation of the strain gages.
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CHAPIER 6.8

RECOMMENDATIONS

The fatigue machine designed for combined stresses closely simulates
fisld conditions, However with certain modifications this fatigue machine
could come even closer to certain field conditions. Considerations for

redesign are as follows:

1. A method of shock loading the test specimen to simulate sudden
loeds some shaft might undergo.

2. A method of varying the torque and the bending moment, during the
test operation., These conditions should be varied simultaneously if main-
taining the same stress ratio is raquired.

3. Incorporate environments in vwhich an actual shaft operates. For
axsmple, if the shaft is operating at high temperature, 8 means of heating
the test specimen can be developed.

4. Locate a commarcial collet that would hold steady torque in excess
of 6000 {n-lb, thereby allowing less machining onmn the test specimen than is

required at present.
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SECTION 7

EXPERIMENTAL PROGRAM TO DETERMINE
STRENGTH SURFACES
FOR
DESIGN BY RELIABILITY

Preceding ﬁage blank
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CHAPTER 7.1
INTRODUCTION

This project has a twofold objective. The first is to provide a
theory and methodology for designing by reliability in complex fatigueg
the second is to provide experimental determination of the required
strength surfaces, and, concurrently, a verification of the practicality
of the methodology.

The results which have been accomplished to date in theory and
methodology have been presented in Sections 1 through 5. The axperi-
mental research equipment has been described in Section 6.

This section concentrates on describing the experimental research
program, the results obtained to date, their analysis and their conver-
slon to strength distributions. The direction of the second year's
research effort is also presented.

*PrecTadinéBge blank :

261

L T i e

P

- T



CHAPTER 7.2
CALIBRATION OF RESEARCH BQUIPMENT

Required Calibration

Toolholder strain gages.- In order to have confidence in the output
of the recording equipment, calibration of the toolholder strain gages is
required. This calibration is necessary for both the bending and torsion
bridges. By comparing the recorded strain output with the output expected
from theory, any significant errors can be spotted.

— > -

Specimen groove stress.- Also required for the testing program is a
calibration between the 8tress level on the toolholder and the actual
stress level in the specimen groove. Once this calibration has been
accomplished, there will exist a curve for predicting specimen stress vs.
toolholder strain. Then it will no longer be necessary to measure the
actual stress in each specimen groove - a costly and time-consuming step.

The procedure used in calibration and the results to date are described
below.,

Calibration Procedure

Toolholder bending gages.~ The first step in the calibration program
was 10 compule une expected strain output from ths toolholder due to the
dead weight of the loading frame and dus to weights being applied at the
end of the loading link. Although the calculation involved in such a
procedure will not lead to "exact" answers due to uncertainties about .
lever arms, moduli of elasticity, etc., thay will serve to point out any signi-
ficant errors in instrumentation or gaging.

Figure T.l shows schematically the arrangement of the loading mechaniem.
The waight of each item and the total weight are alao shown. In Table 7.l
the expected strain from the loading frame and the weights on the end of
the loading link have been computed. :

To compare the actual output from the bending strain gage bridge wita
the output predicted in Table 7.1, tests were run on the machines and the
strain output was recorded with the instrumentation described in Section 6.
The recommendations of the Honeywell Company, as contained in their
Instruction Manuale (1) and (2)*, were achered to in setting up, operating,
and calibrating the equipnent.

# Numbers in parenthesis refer to References at the end of this section.
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FIGURS 7.1  MOMENT ON SPECIMEN CALCULATED FROM WEIGHT OF LOADING
BAR, LOADING BEARINGS, WEIGHTS ON PAN, BTC.
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TABLE 7.1

EXPECTED STRAIN ON TOOLHOLDER DUE TO DEAD WELGHT
OF LOADING FRAME AND WEIGHTS APPLIED THEREOR

ITRM : WEIGHT LEVERAGE LOAD P LOAD ¥ TOOLHOLDER TOOLEOLDER TOOLHOLDER
(1b) FACTOR (1b) (1b) MOMENT STRESS STRATN
(in-1b) (psi) ( A~ in/in)

Homents Due To Frame Itoms

l. Boriz. Link 708 1.0 7.8 309 17.6 27.6 0.93
2. Vert. Links 2.6 - 1.0 2.6 1.3 5.9 9.2 0.3
3. Br'g. Ring hoz —— —— ‘ ).\.2 1 1809 29.6 0.99
h. Bl"g. ASﬂ.yq 2.6 b l — ‘ 2.6 11.7 ‘ 18.3 0-61
5. Load. Bar 22.5 9.5 23.0 - 106.5 L79.0 - 7h9.0 25.00
60 Load. Pnn los 1900 28.5 . 1&-25 6’4.2 ) 100.1 .
. 7.3 333.5 T

Moments Due To Additional Weights On Loading Pan

1. 2.5 lbe wte 2.5 19.0 L7.5 23.75 107.0 167.0 5.57
2. 5.0 1b, wt. 5.0 19.0 95.0 h7.5 = 2140 " 334.0 11.10
3. 10 1b. wt. 10.0 19.0 190.0 95.0 126.0 - 665.0 21.80
L. 25 1b. wt. 25.0 19.0 475.0 237.5 1070.0  ~  1670.0 55.57
5. 50 1lb. wte 50.0 19.0 '950.0 L75.0 2180.0 3340.0 © 111.00
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Machine No. 1 was calibrated first in the following way: A recording
of strain output was made with a specimen (and thus the toolholder) sub- .
jected to the dead weight of the loading frame alone. Next, a 2 1/2-pound
weight was put on the loading pan, and another recording was made. -
Recordings were then made with increasing increments of 2 1/2 pounds of
load up to twenty-five pounds, and then with decreasing increments of 2 1/2
pounds back down to the dead weight of the loading frame. The above process
was repeated three times and the results were plotted as shown in Figure 7.2.

This curve shows that the measured strain agrees with that expected
from theory very well, the maximum deviation being about 74 in/in. Also,
the reproducability of the data is quite good. The data in most cases is
within a band which is + 2.5 4 in/in from the mean value. It was felt
that the visicorder recordings could not be read any closer than this.

In Figure 7.3, the calibration curve of the mean values of Figure 7.2
is shown. Here the mean values are all well within the + 2.5 in/in
deviation, and the curve shows good linearity. This is the calibration
curve for Machine No. 1, relating the load on the loading pan to the
expected strain output in g in/in from the bending bridgse.

‘
!
!
|
|
|
|

The above calibration scheme was repeated sgain for Machine No. 2.
Figure 7.L shows the final results, the mean of six values, plotted for
Machine No. 2 and compared with Machine No. 1. Several conclusions can
be drawn from this figuret '

1. Both machines agree quite well with the output expected from
theory.

2. The machines are very nearly identical. The average difference
between them being 1.51 s in/in.

3. Both machines show a linear relation betwsen strain output and
load on the loading pan, and the slopes of these lines for both machines
are essentially identical.

During the teating program it was found that a shorter loading bar
would be required in order to produce lower stress levels. The above
program was repeated on both machines for the short loading bar. The
results are shown in Figures 7.5, 7.6, and 7.7. The resulis and conclu-
sions for these figures are much the same as those given above.

Calibration of stress in specimen groove.- Once the strain in the
100lhBId6T banding brid.e 19 dovernmined, the major concern becomes that
of determining the specimen stress. Theoretically, expected values of
specimen stress can be calculated from the known toolholder strain. The
toolholder strain can be converted to toolholder stress, and the tool-
holder moment can be calculated from the toolholder stress. Since the
moment on the toolholder and the moment on the specimen are the same, the
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spocimen stress and strain can be calculated from theory as follows:
’ By a static analysis of Figure 7.1, the equation relating the weight
i § on the loading pan to the moment on the gpecimen is

‘ Hs = 207 + 214w (7.2.1)
fi vith the short lever arm, and
T M, = 597.3 + 2.7 w (7.2.2)
i with the long lever arm, where
‘ M = moment on the specimen in in-lb.
‘ - w = weight on the loading pan in lb.
- By using the bending stress formula, and the geometry of the specimen
D a8 given in drawing No. UANASA-6700-B-002, the bending stresses in the
il specimen groove can be related to the moment, M, by
Mo

| | A s

spec.

' where

iy o’ 3

' I/c = =35~ = 0.0122 in

d = 0.478 in (as per received specimons)

' K, = 1.L1 (as per received specimens)

H 80 that

Oypec. = 115.5 M (7.2.3)
g This equation gives the relationship between the stress in the specimsn
groove and the moment on the toolholder; which moment is equal to the

a moment on the specimen.

‘ Combining Equations (7.2.1), (7.2.2) and (7.2.3) gives

' o'apoc. = 115.5 (207 + 21.L w)

3 = 23,800 + 2,L60 w . (7.2.4)
! 72
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for the short lever arm, and

Cppec. = 115.5 (597.3 + L2.7 w)

= 68,900 + 4,920 w | (7.2.5)

for the long lever arm.

The specimen strain is related to the specimen utreéa by the formula

€ -

3 (7.2.6)

s

The toolholder bending stressees can be related to the moment, M, on
the specimen or toolholder by

Mc
Gtool T

- 32xNx?2
I [(2)1‘ - (1.3125)"]

which reduces to

Oppp = 1.5 M (1.2.7)

Then the toolholder ati'ain. which is the strain being monitored by
the instrumentation, is given by

€-L (7.2.8)

t" B,

By combining Equations (7.2.3) and (7.2.7) the relation
11 *
Gmo. - I.;Eé U‘tool

dspec. = 73.8 dbool (7.2.9)

or

is obtained.
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Then by the use of Equations (7.2.6) and (7.2.8), it is seen that

Etool

€ = 73.8 €
y spec.

spoc tool

Since E, the Young's Modulus, for all alloy steels at room temperature

4 about the game and around 30 x 106

GBPOO. - 73-8 etOOl (702.9)

The results of such calculations are shown in Table 7.2. These expected
values can then be corpared with the actual strain output as measured with
the strain gages and the associated instrumentation.

To measure the actual strain in the specimen groove, 1/64-in. gage
length strain gages were mounted in the specimen groove. The method of
mounting these gages is shown in Figure 7.8. The results of a limited
testing program are shown in Figure 7.9. Specimen 38 in Machine No. 2
gave results within 90 A4 in/in of the theoretical, which is quite good.
Specimen 79 in Machine No. 1 shows a large discrepancy between obsarved
values and theory. This may be attributed to misalignment of the gages,
failure to glue the gages in the exact bottom of the groove, insecure
bonding of the gages, or other. Several other specimens were also instru-
mented and run, but these specimens failed before any useful data could
be obtained. These failures are attributed to the fact that the gages,
in the specimen groove, are forced to fit a compound curvature. This
places severe stresses on the gage-to-carrier bond. BExamination of the
gages also showed that they were buckling, or "crinkling-up® off of their
carriers. For these reasons, this portion of the calibration program
vas discontinued until satisfactory gages and mounting procedurss can be
found, Different type gages (1x1MLSEC6 foil gage with dynamic leads)
have been ordered and will be used to satisfactorily complete this phase
of the research.

Calibration of torque bridge.- The torsion strain gage bridge has

not as yet been calibrated. B8uch calibration will be accomplighed in
the near future.
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TABLE 7.2

EXPECTED SPECIMEN STRAIN LEVEL
FOR A GIVEN TOOLHOLDER STRAIN LEVEL

TOOLHOLDER TOOLHOLDER TOOLHOLDER SPECIMEN SPECIMEN

STRAIN STRESS MOMENT STRESS STRAIN
(p in/in) (pei) (in-1b) _{psi) (g in/in)

30 900 515 66,000 2200
35 1050 672 77,200 2570
LO 1200 770 88,000 2930
LS 1350 864 100,000 3330
50 1500 960 110,000 3670
55 1650 1060 121,000 4030
60 1800 1150 132,000 4400
65 1950 1250 - 13,50 4760
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CHAPTER 7.3
TEST PLAN

Data Requirements

The objective of the testing program is to determine three-dimensional
Goodnan diagrams such as the one shown in Figure 3.6. To obtain these
Goodnan diagrams, the testing program described in Chapter 3.3 should be
useds Data is needed on life distributions at various siress levels and
stress ratios, as previously described.

This testing program is currently in progrees at The University of
Arizona. A summary of the required data and the degree of completion of
the test program indicated is given in Table 7.3. When all of this data
is obtained, the three-dimensional Goodman diagrams(at various life cycles)
will be known for the test material in its configuration, as described in
Chapter 6.L and Drawing UANASA-6700-B-002. In addition to thias specific
knowledge, & demonstration of the practicality and applicability of the
methodology described in this report will have been accomplished.

The minimum number of specimens required for this program has been
estimated in Chapter 3.3 as 648 specimens. This number of specimens will
be tested in The University of Arizona's current program. Currently,
about 100 specimens have been tested.

Data Sheet

The data sheet used in the testing program is shown in Figure 7.104 -
The colunns in the data sheet are used as followss

Test Number The number of the test being
conducted is entered serially,
beginning with number one and
continuing through number 648.

Specimen Serial

Rumber Bach specimen serial number is
entered. The order in which
the specimens are being tested
has been predetermined by a
random selection procees which
will be explained later in
this section.
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TABLE 7.3

i "STRESS LEVELS AND STRESS RATIOS .
OF THE UNIVERSITY OF ARIZONA TESTING PROGRAM

Stress
Ratio .
Stress @ L 2 1 % E 0
Level
(psi)
' ' 8
2].1’ 600 P - - - - - :',-;
167,300 c | - - | - - - '?:
142,700 ' c P - - - - g
118,100 c | P P - - - %
100,900 P P P P - - g ]
85,000 IP, | P P P =l |- |o§
_. : !g, o
65,000 o R IR IR IR I g
50,000 - s [P PP [ |g®
[
. . q o]
35,000 - - - P P P E
20,000 - - - - P P g .g
. N oo
10, 000 - - - - P P |§ ™
- 51000 . - - - :']I - P A
C = Completed IP = In Progress P = Planned

# These s‘tress levels are subject to change based on trends
to be indicated by new test results which will be obtained
during this research. ' -
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Stress level

Stress Ratio

Machine Number

Estimated Failurse
Cycles

Date
Start Time

* Estimated Fallure

Time

Cycles at Failure

Visicorder Run

Observer Test

Remarks

The mean and alternating stiresses
at which the specimen is being
tested are entered.

The stress ratio of the alter-
nating stress to the mean atress
for the test is entered.

The nunber of the machine used
is entered.

This can be estimated from previous
data or theory, and entered.

Date of test is entered.

The starting time of the test
is entered. -

This can be detemined from the
estimated cycles to failure and
entered.

The actual number of cycles that
the specimen ran before failing
are recorded here at the end of
the test.

If a visicorder trace ls made
for the test, the number of the
trace is entered.

The initials of the person con-
ducting the test are entered.

Specific observations made by the
person conducting the tests are
entered, including machine operat-
ing condition, excessive specimen
vibration, if test acceptable, etc.

This data provides the information required to determine the life
distribution by a computer program.

Once a number of these life distributions have been generated, the
three-dimensional Goodman diasgram can be determined.
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Random Sampling

[ach test specimen s numbered consacutively when received. The
wal pleces are then entered in the Specimen Serial No. column in a
rensiamiszed manners A book entitled "A Million Random Digits" (3) is
wes to select the test plece to be tested flrst, second, stc.., It is
to randomize the specimens within one and the same S-N
so that the generated data can be analyzed for that one S-N

dlagram)
&l agrem vithout having to wait for all S-N diagrams to _be developed.

Summary

The teat program being conducted at The University of Arizona has
»een desoribed. The test results obtained to date will be discussed in

se oaxt chapter.




CHAPTER 7.k

TEST RESULTS

Digital Computer Programs
for Reduction of Data

4 Programs for life distributions.- Two digital computer programs have been
" developed for the analysis of cycles-to-failure data at any stress level.

fhese are given in Appendix B. One program computes the mean and standard
deviation for the nomal distribution, and gives the Chi-square goodness

of fit value with Its associated degrees of freedom. The other program P
computes the log mean and log standard deviation for the lognomal distri- N
bution fit, and gives the Chi-square goodness of fit value with 1its ' b
associated degrees of freedom. The cycles-to-failure data at each stress L
level is entered into each program. Based on the results, a decision can L
bs made as to whether the life distributions fit the nommal or the log-
nomal distribution best. '

The inmputs into each program are the same, and consist of

1. The stress level at which the test was run.

2. The number of specimens tested at this stress level.

3. The number of cycles to failure observed for each specimen,
in any order,

The outputs from the computer programs are identical, and consist of

1. Number of sp‘ecimena.

2. 8tress level.

3. Mean (or log mean).

L., Standard deviation (or log standard deviation).

5. Skewness.

6. Kurtosis.

7. 'Up'per and lower limits of the mean (or log mean) and
standard deviation (or log standard deviation) at a 95%
confidence level.

8. The Chi-square goodness of fit value to the normal (or

lognormal) distribution with the associated degrees of
freedom,
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Aftor the data is processed by these two programs, a decieion can be
made as to which distribution, nommal or lognormal, is most appropriate.

Proprams for strength distribution.- Two computer programs also have
been developed for the conversion of life distributions to strength dis-
tributions for a given stress ratio. This conversion is described in :
Chapter 3.3 and depicted in Figure 3.5. These programs are given in
Appendix C. One program results in a normal strength distribution and
the other results in a lognommal strength distribution. The means and
standard deviations are given, as well as the Chi-square goodness of fit
value with associated degrees of freedom. The strength distributions
are computed at various life cycles, the interval used betwsen cycles is

at the discretion of the programmers.

The inputs to each program are the same, and consist of

1. The number of life distributions being used.
2., The interpolation step between distributions in psi.

3. The atress levels at which life distributions were taken.

L. The calculated mean (or log mean) and standard deviation
(or log standard deviation)_for each life distribution.

5, The number of specimens tested at each stress level.

6. The starting point in log cycles for which strength distri-
butions are dssired. ‘

7. The increment in log cycles for which strength distributions
are required.

The outputs from the programs are identical, and contain

1. The mean {or log mean) and standard deviation (or log
standard deviation) of the strength at each 1ife cycle
specified by the input. :

2. The upper and lower values of the above at the 95% confidence
lgvel.

3, The Chi-square goodness of fit value with the assoclated
degrees of fresdom for each strength distribution.

Based on the output from these programs, a decision can be made as
as to whether normal or lognomal strength distributions best f£it the
data. Also, three-dimensional Goodman diagrams can now be constructed
for specified numbers of life cycles, based on output from the above




programg for a number of different stress ratios. Thus the cycle from
the procurement of cycles-to-failure data to the generation of three-
dimensional Goodman diagrams is completed.

It should be noted in connection with the computer programs for
converting life distributions to strength distributions, that the follow-
ing four combinations are possible:

Life Distribution Strength Distribution
(input) {output)
normal normal
normal lognormal
lognormal normal
lognormal lognormal

The results of using these programs on the data obtained to date
will be discussed next.

Results for Life Distributions

Life distributions have been found for three stress levels for the
stress ratio of aﬁ/a’x =00, ap shown in Table 7.3. The results of the

computer runs for these stress levels are shown in Table 7.4 for both ths
normal and lognormal distribution.

These results can be used to plot an 5§-N disgram as shown in Figure
7.11. From this figure it can be seen that the slope of the actual 8-N
diagram is very near to that predicted by the Shigley method as described
in Section 6. However, the actual strength levels as determined by test
are substantially higher than the theoretical. The following explanations
to this apparent difference between theory and experiment were soughts:

1. Improper spplication of the stress concentration factor in the
theoretical determination of the endurance strength (Section 6) and in the
calibration equation given earlier in this section.

2. Much higher actual atrength in a grooved specimen of this material
than published data in Reference 60 (Code 1206, p. 1), Section 6, indicates.

The first explanation was explored by reviewing the results in Table
7.2 and Figure 7.9. The specimen stress calculations contain a stress con-
centration of 1.41 in bending. If this were inapplicable and the calculations
were wrong, & significant discrepancy between the theoretical speciman stress
and the calibrated stress should have been obtained. 1In Figure 7.9 the
theoretically calculated stress in the specimen groove ie larger than that
obtained from strain gages, but by only 2,700 psi. This cannot explain the
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TABLE 7.4

RESULTS OF COMPUTER RUNS FITTING CICLES-TO-FAILURE
DATA TO NORMAL AND LOGNORMAL DISTRIBUTIONS

Normal Distribution Lognormal Distribution
Stress Mean | Standard |Skewness|Kurtosis| Chi- }Degrees} Log Log Skeuness|Kurtosis| Chi- |Degrees
Level Deviation Square| of Mean | Standard Square| of
cycles Fit |Freedom Deviation Fit |Freedom
psi cycles Value log Value
: cycles log
cycles
167,300| 9,029 995 | -0.247 | 1.995 [1.382] 2 ]3.952| 0.049 | ~0.07 | 2.123 |2.169| 2
12,700 22,171 3,708 | -0.0k2 | 1.855 |0.787 | 3 . JL.339| 0.07h | -0.265 | 1.945 |0.T13| 2
118,100 (77,977 12,195 0.873 | 3.060 |L.637| 3 lh.387 0.067 0.575 | 2.696 |0.526 3
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260,000 - 142,000 = 118,000 psi difference (84% of 142,000), at 10° cycles,
{n the strength curves in Figure 7.9. A more extensive determination of
the actual specimen-groove stress by better strain gages will be made to
yorify the preliminary results of Figure 7.9. If Figure 7.9 is verified,
then the validity of the stress concentration factor application at its
chosen magnitude will have been ascertained.

The determination of the 8-K diagram by the method recommended by
shigley has been sccepted by many authorities. There 1s the possibility,
nowever, that the recommended conversion of the theoretical stress concen-
tration factor, as determined by photoelasticity, to the actual stress
concentration factor may not be applicable to this specimen material and
geomstry under fatigue conditions. The same may apply for the other factors,
namely, the size and surface finish factors. This points out the possible
{nadequacy of the available data on these important design factors for
SAE L3LO steel, condition C-L, heat treated to R, 35/L0.

i

The second explanation may also shed light on the queries raised
previously. This aspect was explored by subjecting five specimens to a
tensile test. These specimens had a diameter at the base of the groove

of 0.499 in. and an area at this section of 0.195 in2.. The following
ultimate loads were obtained: 47,100, 47,900, 48,700, 47,900 and 47,900 lb.
with a mean of 47,500 1b. and a range of 1,600 lb.. The ultimate strengths,

sult’ should be given by

- P
8ult xn x

whare

K. = actual stress concentration factor in direct tension

Al Lt 4R ES B UE NN MW Ay ex W WK %

P = ultimate load, 1b.

A = actual sectional area of specimen at ultimate load, i1n?,

All five specimens exhibited hardly any necking and a substantially brittle
fracture because of the existing groove in the specimens. To get S, 4, the

actual value of K‘ needs to be known. Design books state that for brittle
materials subjected to static loading the strese concentration factor can
only be determined by experiment, and that theoretical stress concentration
factors do not apply. Nevertheless, the actual stress concentration factor
should not exceed the theoretical. Consequently, the upper limit of Sult

will be that obtained when using the theoretical stress concentration factor,
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vhich for the geometry of these test specimens with a d/D = 0.685 and
r/D = 0.198, is 1.60 in direct tension. The lower limit of sult will

pe that obtained with a stress concentration factor equal to 1.00. These
considerations give the following values for Sult:

1.60 x %;ifgél

390,000 psi

1.00x’%:r5§°§-

243,000 psi

Sult maximum

8,4 minimum

The S-N diagram's strength value at 103 cycles is customarily taken to
be 0% of the static ultimate strength. Consequently, the starting
strength value of the 8-N diagram, Su’ will be between

8, maximum = 0.90 x 390,000 = 350,000 psi

-

and

8, minimum = 0.90 x 243,000 = 218,000 psi

The experimental 5-N dlagram based on the data obtained eo far gives
an S8 value of 260,000 psi, which corresponds to an actual stress concen-

tration factor, Ka, of

Sl X 4 Sg X A

- 260,000 x 0.195
.90 x Ui,

=1.19

This value is reasonable and within the range of 1.00 and 1.60 predicted
before. The validity of these findings will be ascertained by the second-
year effort, during which period more test data will be generated.
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Results for Strength Distributions

At the present time, there is not enough test data to enable the
conversion of the life distributions to strength distributions. The
pecessary data is being obtained under the present testing program.

Endurance Limit

The determination of the endurance limit of the specimen requires a
slightly different method than that doscribed in Chapter 3.3. Basically,
the tests must be concentrated around the encurance limit. The following
pathods exist for the determination of the endurance limits :

1. Probit method (L, p. 8)

2. Staircase method (L4, p. 9)

'3, Modified Staircase method (4, p. 10)
L. Step method (L, Pp. llg

5. Prot method (L, p. 12

From these methods the choice was quickly narrowed to the Probit and
the Staircase methods (the Modified Staircase method is included as part
of thas Staircase method) since Method L may introduce errors due to the
scoaxing® of the material and Method 5 will give more uncertain results
than Mathods 1, 2 or 3. Table 7.5 shows a comparison of the remaining two
methods, with the preferred Staircase method. Actually, since the testing
will be split among two machines, the Modified Staircase method will be
used.

' In the Modified Staircase method a specimen is tested at what is thought
to be the endurance limit. If the specimen fails, the stress is lowered

one increment and the next specimen is tested. If the speciwen does not
fail, the stress is increased one increment and the next gpecimen is tesgted.

A specimen is a "no-failure" specimen if it runs 107 cycles. Ons increment
is 8% of the estimated endurance limit. Analysis of the data is given in
reference (L, Section VI).

This method is currently being used at The University of Arizona to
obtain the endurance limit for a stress ratio of 8,/8y = °°. These tests
will be conducted for the other stress ratios also.

A discussion of the test results obtained to date is given in the next
chapter.
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TABLE 7.5
COMPARISON OF TESTING METHODS
FOR ENDURANCE LIMIT
-
Mathod NMmber |Total Time Advantages Disadvantages Comments
of per
Specimens| Endurance
Limit
Probit so% 52 days |More accurate More spacimens
(2 mach.) Longer time
Staircass 30'-' 3 days |Fewer specimens Preferred method
(2 mach.) | Shorter time
Advance knowledge of
mean not required
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# "A Tentative Guide for Fatigue Testing and the Analysis of Fatigue Data", ASTM,
Philadelphia, Pa., 1958, 80 pp. )
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CHAPTER 7.5

DISCUSSION OF RESULTS

1D -4 NN My

. Life Distributions
Normal vs. Lognormal

1

o

3

The results of the Chi-square goodness of £it tests from the testing
program to date are sumarized in Table 7.6.

These results indicate that the normal distribution is preferred at the
167,300 and 142,700 psi stress levels. The lognormal distribution is preferred
"at the 118,100 psi stress level. As discussed in Chapter 2.2, it is generally
thought that life distributions will be skewed, and thus they ghould fit the
lognormal distribution better than the normal. However, it should also be
noted that the higher stress levels approach the area of low-cycle fatigue and
static fallure. Static strength distributions are usually normal. Therefore,
the normal distribution may be the best for tests at higher stress levels.
Further testing will provide a better basis for deciding between the normal
and lognomal distributions. Also, it would be informative to test more than
18 specimens at each stress level in order to get a more significant Chi-square
teste. -

Strength Distributions
‘Normal vs. Lognormal

Currently there is no data to support a decision as to whether the strength
distributions from this research will be described best by the normal or the
lognormal distribution. Gensrally, they are treated in the literature as normal.
In particular, Smith (5) has analyzed large amounts of data on steel wires and
has found the normal distribution to give the best fit. Verification of results
from this project must await the completion of tests now in progress. :

L
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Adaguacy of Data and Data Processing Methods

The nature of the data being obtained and the testing program being cur-
rently pursued indicate that the desired results outlined in Table 7.3 will be
obtained successfully.

i

4

The computer programs for data processing have been found to be adequate
for constructing the three-dimensional Goodman diagrams which are required for
the design by reliability methodology.

E I

The results to date are following expected patterns except for the higher
strength exhibited by the specimen material in its present geometry. No major
difficulties have been encountered and hopefully none are expected.

L0 —

292

vl

|{




TABLB 7.6'

SUMMARY OF CHI-SQUARE GOODNESS OF FIT
RESULTS FOR CYCLES-TO-FAILURE DISTRIBUTIONS

% The level of significance indicates the relative probability of
a discrepancy between the test data and the distribution. Thereforae,
a low level of significance is indicative of a better fit.

Bk AR NN WY '_m-wm. ‘

™ ik A

Stress Mstribution Chi- Degrees Level *
Level Square of of
Fit Freedon Significance
psi -Value

167,300 normal 1.382 2 0.50
167, 300 lognormal 2.169 2 0.66 S
142,700 normal 0.787 3 0.15

142,700 lognormal 0.713 2 0.

118,100 normal L.637 3 0.80
116,100 lognormal 0.526 3 0.18
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CHAPTER 7.6
CONCLUSIONS AND RECQMMENDATIONS

Conclusions

The research equipment and instrumentation used in this testing program
have been assembled and calibrated and are working satisfactorily. The test
plan, described in this section, is now being used to generate the three-
dimensional Goodman diagrams which are necessary for the design by reliability
methodology «

Although the results gensrated to date do ot justify drawing final con-
clusions about the data, it can definitely be stated that the program is working
and that the capability doss exist for obtaining the desired results.

Procedures and programs for reducing data now exist and are quite adequate.

The successful completion of the testing program is merely a matter of
time. The necessary data is now being accumulated.

Recoxmsendations

: I
wmn I

The following recommendations are made regarding the testing programs
1. Complete the curreant test program as outlined in Table 7.3.

2. Complete the fabrication of test Machine No. 3 in order to
obtain the required data faster. '

3. Investigate further, by more thorough testing, the nature
of the 1life distributions, and subsequently, the strength
distributions. :

L. Begin to plan for similar tests to be run on specimens of
different materigls, or on specimens with different stress
concentrations, or on specimens under different environ-
mental conditions, as needed to develop the methodology.
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SECTION 8

OVERALL CONCLUSIONS
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SECTION 8
OVERALL CONCLUSIONS

The design-by-reliability methodology is found to remove the major
’ objection to the conventional non-probabilistic design methodology, whereby
E not only the geometry and material of a part are established, but also

= the degree of succesa of such a design at the design stage, namely its
- reliability. The design-by-reliability methodology recognizes that each
E parameter entering the failure-governing stress and the failure-governing

- strength may be a random variable, and consequently distributed. It

_ follows then that the failure-governing stress and strength are themselves
E distributed as opposed to conventional design vwhere they ars considered

as having discrete valuss, Sufficient tools have been presented in this
report to show that the probability of successful function of a designed
part can be calculated and thus the true integrity of the designsd part
determined (Section 1).

In the determination of the failure-governing stresa and strength
' distributions of the various failure-governing strength criteria for alloy
2 steels, the distortion-energy criterion is found to apply best in case of
fatigue with the maximm shear atress criterion a secondary alternative,

E Nevertheless, to determine the quantitative reliabilities pracisely enscugh
P substantial refinements are necessary in the determination of the true
i failure-governing strength distributions, be they based on the distortion

energy or the maximum shear stress theories of failure. One refinement

is the requirement that failure-governing strength surfaces be determined
rather than simplifications such as in the form of modified Goodman diagrams.
Such simplifications distort the failure-governing strength picture end,
unfortunately, drive the design further away from the optimum usually,
tl)wugh not necessarily always, towards the over-designsd direction (Section
1). .

A gresat scarcity of data on the distributions of stress and strength
parameters is found to exist today. Major efforts need to be expended for
their acquisition (Section 1).

Another major need in the determination of the failure-governing
stress and strength distributions is the synthesis of the distributions of
the parameters involved into these distributions, once the functional
relationships between the fallure-governing stress and strength and their
parameters are established., It is found that there are seven promising
analytical methods for accomplishing such syntheses, namelyt

1. The Algebra of Normal Functions
2. Change of Variahle .

Preceding page blank
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3. Moment Generating Function

h; Fourier Transform, Convolution,‘ and Inversion
S, Mellin Transform, Convolutimn, and Inversion
6. Characteristic Function

7. Cumulative Distribution Funciion

the conditions of applicability of these methods indicate that the majority

of the required syntheses can be achieved; however, mich additional analytical
research is required to establish the true distribution of the dependent
yariable when the independent variables are non-normal. Even in the instance
of normal variables, exact analytical methods for arriving at the distribution
of the dependent variable are not available when the independent variables

are in a functional form other than in terms of sums or differences. This is
also true when the dependent varisbles are not totally independent of each
other (Section 2).

The work which has bsen done for the synthesis of apecific distributions
in specific functional relationships has been summarized in Tables 2.1 and 2.2

(Section 2).

Also, numerical methods exist for the synthesis of distributions. The
Fourier and Mellin transform methods, for example, lend themselves to numerical
solution; whereas, the Monte Carlo method is a direct numerical approach to
all problems of synthesis of distributions, thus making it a very powerful
method (Section 2).

The Algebra of Normal Functions method appears to provide the most
expeditious method for determining the failure-governing stress and strength
distributions from normally distributed random variables. However, exact
solutiona are obtained only for sums and differences of random variables,
and the remaining cases are only approximations. Only in lnstances where the
variances of the distributions are a small percentage of their means and the
distributions are substantially removed from the origin does The Algebra of
Normal Functions method provide results of sufficient accuracy. This aspect
requires further inveatigation (Section 2). .

Only meager published statistical information exists on the distributions
of parameters entering the failure-governing stress function. This dearth
of information includes such important design parameters as loads, stress
concentration, notch sensitivity, and such physical properties as Young's
Modulus, Poisson's Ratio and others (Section 3).

The same picture is found for the parameters entering the failure-
governing strength function. Among these parameters are the following:
size, surface finish, manufacturing processes, surface treatment, corrosion,
cavitation, wear, and temperature. Hardly any distributional data on thess
factors has been found to exist. This again points out to the fact that
much research needs to be conducted for the gensration of such much-needed




Ass data 80 that the design-by-reliability methodology can be implemented
with its full potential (Section 3),.

In the instance of fatigue strength distribution determination, computer
asthods were developed for the determination of life cycles-to-failure dis-
iributions at specified stress levels and for their conversion to strength

jbutions at specific life cycles. These methods enable the dasign of
parts subjected to fatigue loads on the basis of their relisbility (Sections

3 and L).

Methods have been presented for the analytical, semi-analytical, and
computer determination of the reliability of a mechanical component given
{ts failure-governing stress and strength distributions, regardless of the
pature of these distributions (Section 5).

A major effort for the firat year's segment of this research was sxpended
in the design, construction, and development of a combined bending-torsion
fatigue reliability research machine as no such commercially available machines
could be found. These machines utilige the four-square principle, enabling
the locking-in of the torsional stresses which are superimposed onto the
reversed bending stresses in a rotating specimen simulating a shaft. These
machines are unique, enabling the application of 3,540 in.-1b. of bending
moment and 5,400 in.-1b. of torque. A specimen can be subjected to either
torsional or bending stresses, or both, over a wide range of stress ratlos
of bending stress to torsional stress (Section 6).

Two of these machines are presently running satisfactorily in & research
program for the determination of the failure-governing strength surface for
approximately 750 specimens made of SAE 4340 cold-drawn steel, condition C-b,
heat treated to hardness R, 35/4L0. These specimens have a 3/4 in. major

diameter, and are grooved to a 1/2 in. minor diameter, with a groove radius
of 0.145 in.. This results in a theoretical stress concentration factor of
1.41. The test plan involves six stress levels and six stress ratios to
enable the generation of experimental fatigue strength surfaces which will
enable the designer to couple with his fatigue failure-governing stress dis-
tribution surface and calculate the component reliability, when the com-
ponent is subjected to such stresses (Section 6).

The fatigue research program being pursued with these machines is 11%
complete and the major effort is presently being expended in the gemeration
of more fatigue data towards the completion of the planned experimental
research program. The results obtained to date are given in Table 7.3. A
preliminary reduction of the test data obtained to date has been accomplished
and the result summarized in Table 7.6. This reduction inwolves the fitting
of the normal and lognormal distributions to the life cycles-to-failure data.
Conclusions as to whether the normal or lognormal distribution best fits this
data has to await the completion of the research program and the determina-
tion of the strength distributions inwolved (Section 7).

Tt should be noted that relatively higher strengths have been exhibited
by the specimen material in its present geometry than found in the published
literature and handbooks, indicating the necessity for research into this
aspect for an adequate explanation of this phenomenon.
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1 The successful completion of the experimental research program, of
the determination of the time-dependent strength distributions, and of
the theoretical and computer determination of the resulting reliabilities
for the material being researched upon is merely a matter of time.
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SECTION 9
OVERALL RECOMMENDATIONS

The design-by-reliability methodology should be used to the fullest

T 1 sxtant possible by the modern design engineer. However, many aspects
R pemain to be explored further as the field is still in its early stages
— ¥ of development. Much more research needs to be conducted in this field,

including the following:

1. The true failure-governing strength criteria and their statis-
tical applicability to specific nmaterials and load combinations
should be determined, including those of the distortion energy

— and maximum shear stress.

2. The applicable failure-governing strength surfaces should be
experimentally determined, and the theories developed in Item 1

above should be verified statistically.

3. The distributions of strength design factors, including those
of size, surface finish, manufacturing proceases, surface treat
ment, corrosion, cavitation, wear, and temperature, should be
deternined. o ,

k. The failure-governing stress factor distribﬁtions, including :
those of loads, stress concentration, notch sensitivity, and of i

such physical properties as Young's Modulus, Poisson's Ratio, |
and others, should be determined.

S. The Fourier Transform and Mellin Transform methods should be
developed more fully to extend their usefulness for the synthesis
of functions of random variables for mechanical reliability

applications. :

6. Analytical and computer methocs for the synthesis of the follow-
ing distributions should be developeds:

1, Weibull
2. QOamma
3. Beta

These distributions are of potential importance in the area of
mechanical reliability.

7. Other functions of random variables such ag Y = InX, Y = ex,

Y = sinX, etc., should be investigated. These will eventually
be necessary for mechanical reliability work.
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8, Other distributions should be investigated further, including
the following: :

1, Series Reprresentation
2. Extremal '

3. Doudble Exponential

L. Lattice

The applicability of these distributions to mechanical relia-
bility should be studied.

9. Rurther efforts should be expended to determine the applica-
bility of the various distributions on a physical and phencme-
nological basis rather than on the empirical basis of best-fit-

to-data.

10, The question of what is an independent and what is a dependent
prandom variable in mechanical reliability theory should be
examined closely and care should be taken to apply the results
of functions of random variables correctly, based on whether
the variables are truely independent or dependent.

11. The functions of random variables for mixed (not identically
distributed) distributions, such as the product of lognormal
and normal distributions, should be studied. The results of
such studies, as found in the literaturs, do not appear, as
yet, to be too applicable to mechanical reliability,

12, The accuracy of the approximations used in The Algebra of

Rormal Functions should be evaluated.

13. The Monte Carlo method should be developed more extensively
for solving problems involving functions of random variables.

1. Analytical and computer methods should be developed for the
determination of the reliability of a complex part when the
failure-governing stress and strength distributions are surfaces,

15. The strength surfaces for specimens of different geometry and
stress concentrations than those being presently teated should
be determined.

16, The strength surfaces for specimens of materials different
than those being presently tested should be determined.

17. The strength surfaces for specimens subjected to a variety of
other actual envirommental conditions should be determined.

18, The phenomenon of the relatively higher strength exhibited by
 the grooved SAB 43L0 specimens used in this research and the
indication that notched specimens exhibit higher apparent
strengths than ummotched specimens should be thoroughly investi-

gated.
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ABSTRACT
A PROBABILISTIC METHCD OF DESIONING SPECIFIED
RELIABILITIES INTO MECHANICAL COMPONENTS WITH

TIME DEPENDENT STRESS AND STRENGTH_DISTRIBUTIONS

AR 1)

Dimitri Kececioglu, Joe W. McKinley and Maurice J. Saroni
The University of Arizona :
January, 1967,330 Ppp.

By Dr.

A bagic methodology for design-by-reliability in combined-stress
fatigue, with time dependent strength distributions, is developed and
dipcusped. Numerous examples are given, utilizing both the Von Mises
and maximum shear astress theories of failure. Mathematical methods
used in treating problems in functions of random variables are
thoroughly reviewed, and results which apply to functions of random
variables are given. Methods discussed include: Algebra of Normal
Punctions, Change of Varliable, loment Generating Function, Fourier
Transform, Mellin Transform, Characteristic Function, Cumulative
Distribution, and Monte Carlo. Methods for determining and handling
failure-governing stress and strength distributions are given.
Methods for determining reliability once the failure-governing stress

and strength are known are given.
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The design, fabrication, amd operation of a combined-stress fatigue
testing machine for relisbility research are discussed. A testing
program for verification of the design-by-reliability methodology is

described.
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